May 26-28, Leeuwarden

Gemeente Jeeuwarden

provinsje fryslân provincie fryslân 🌑

IACIS

Ministry of Economic Affairs

🖌 Voltea

SNN Jucf

Ministry of Infrastructure and the

Wetsus is co-funded by

+ the Dutch Ministry of Economic Affairs (IOP-TT) Peaks in the Deita)

wetsus

centre of excellence for sustainable water technology

- the Dutch Ministry of Infrastructure and the Environment
- the European Union (European Fund for Regional Development and Seventh Framework Programme)
- Northern Netherlands Provinces (REP-SNN)
- + the City of Leeuwarden, the Province of Fryslân and University Campus Fryslân

11

27	Alexandra Ribeiro	Potential of electrokinetic process for the remediation of estrogens in soil	155
28	Alexandra Ribeiro	Potential of salt marsh plants for the remediation of organic compounds	156
29	Zygmunt Sadowski	Effect of pH on adsorption of arsenic onto fly ash	157
30	Toshio Sakai	Removal of hypophosphite ions from water using ultrasound	158
31	Umarat Santisuk- kasaem	Hydrodynamic behavior of Zero-valent Iron Permeable Reactive Bar- riers: Effects of Permeability Loss	159
32	Wenfeng Tan	Protein complexation with Humic acids	160
33	Sagdat Tazhibayeva	Biocomposites on the base of yeast cells and diatomite such as sorbents of metal ions	161
34	Sagdat Tazhibayeva	Regulation of biodispersies stability by catonic polymers	162
35	Arnaud Villard	Decontamination of solution containing radioactive strontium by so- dium nonatitante	163
36	Mingxia Wang	One-step synthesis of $\delta\text{-MnO}_2$ nanoparticles using ascorbic acid and their scavenging properties to Pb(II), Zn(II) and methylene blue	164
37	Kenta Yamada	Effect of Soil Colloidal Properties on Surface Runoff from Tottori Masa Soil	165
38	Gao Yingxin	The Mechanism of degradation on 4-Chlorophenol by Pulse Radio- lysis	166
39	Miaoyue Zhang	Transport and retention $\bar{\mathrm{of}}$ multi-walled carbon nanotubes in different porous media	166
40	He Zhao	Direct Electrochemistry of Horseradish Peroxidase based on Carbonized Chicken Eggshell Membranes Materials	167
41	Sangho Chung	Development of Functionalized Graphene Electrode for Water Softening	168
42	Marta Hatzell	Enhanced energy generation with capacitive electrodes driven by Exoelectrogen-generated ionic currents	169
43	Felix Hippauf	Solid-State NMR Studies on Adsorption of Electrolyte lons in Carbon Materials with well-defined Porosity	170
44	Mathijs Janssen	Temperature and size effects on the desalination of water	171
45	Doo-Hwan Jung	Preparation of Chestnut-like Carbon Electrodes for Capacitive Deionization	172
46	Peter Kovalsky	Multidisciplinary modelling of CDI using optimisation tools: implica- tions for agricultural applications	172
47	Dmytro Kudin	Water Denitrification using Energy-Efficient Capacitive Deionization Technology	173
48	Xia Shang	Fabrication of composite capacitive deionization electrodes using biochar materials and conductive membranes,	174
49	Nataliya Mishchuk	Electrokinetic remediation of fine clay soils contaminated by	175
		Hydrophobic organic pollutants	

131

Regulation of biodispersies stability by catonic polymers

Tazhibayeva S.M., Musabekov K.B., Eskeldinova Zh.K., Zhubanova A.A.

Al-Farabi Kazakh National University

One of the factors limiting the widely use of cells of microorganisms in water treatment, is the difficulty of separating them from solutions. To solve this problem can be used flocculation of biological dispersion with polymers. Therefore we attempted to flocculation of yeast cells Sacharomyces cerevisae, algae and spherosome Shlorella vulgaris and plant cells spherosome by using cationic polymers like polyethyleneimine (PEI) and polydimethyldiallylammonium chloride (PDMDAAH).

Suspension of yeast cells and spherosome is fairly stable, the value of their optical density only slightly changed over time. Introduction of the suspension of yeast cells Sacharomyces cerevisae and algae Shlorella vulgaris solutions of PDMDAAH and PEI with concentration range 10⁻⁶-10⁻¹ base-mol/I leads to a substantial decrease in their optical density, and with increasing polymer concentration to increase the settling rate of the particles. This is due to flocculation of biodispersions in result of adsorption on them the polymer macromolecules.

Analysis of data on the aggregation of yeast cells, algae and spherosome of plant cells in the presence of PEI and PDMDAAH, change their electrokinetic potential, PEI adsorption on the surface of yeast cells suggests that along with flocculation by neutralization mechanism in these systems occurs due to aggregation on account of bridge formation. This is confirmed by experiments on the change of the reduced viscosity of the cell-PEI.

Calculation of the interaction energy of cells in the presence of polymers is difficult because of the complexity into account the specific adsorption of polymer macromolecules. On the cell surface interaction energy values Sacharomyces cerevisae cells in a medium of sodium chloride are high in a wide range of distances between the particles, the negative energy values are found only at distances greater than 6500Å. From this it follows that the flocculation of yeast cells with cationic polymers proceeds by a mechanism for further aggregation accompanied by the formation of the amorphous structure.