ЕҢБЕК ҚЫЗЫЛ ТУ ОРДЕНДІ «Ә. Б. БЕКТҰРОВ АТЫНДАҒЫ ХИМИЯ ҒЫЛЫМДАРЫ ИНСТИТУТЫ» АКЦИОНЕРЛІК ҚОҒАМЫ

# ҚАЗАҚСТАННЫҢ Химия Журналы

# Химический Журнал Казахстана

# CHEMICAL JOURNAL of KAZAKHSTAN

АКЦИОНЕРНОЕ ОБЩЕСТВО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ «ИНСТИТУТ ХИМИЧЕСКИХ НАУК им. А. Б. БЕКТУРОВА»

# 4 (56)

ОКТЯБРЬ – ДЕКАБРЬ 2016 г. ИЗДАЕТСЯ С ОКТЯБРЯ 2003 ГОДА ВЫХОДИТ 4 РАЗА В ГОД

> АЛМАТЫ 2016

## Ж. К. МЫЛТЫКБАЕВА<sup>1</sup>, Ж. К. КАИРБЕКОВ<sup>2</sup>, А. М. ГЮЛЬМАЛИЕВ<sup>3</sup>, Т. М. ӘНДІЖАНОВА<sup>1</sup>, Д. К КАНСЕЙТОВА<sup>1</sup>

<sup>1</sup>Казахский национальный университет им. аль-Фараби, Алматы, Казахстан, <sup>2</sup>НИИ Новых химических технологий и материалов, Алматы, Казахстан, <sup>3</sup>Институт нефтехимического синтеза им. А. В. Топчиева, РАН (ИНХС РАН). E-mail: zhannur.myltykbaeva@gmail.com

## КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ АДСОРБЦИИ ТИОФЕНА НА NI СКЕЛЕТНОМ КАТАЛИЗАТОРЕ

Аннотация. В работе изучены структуры характеристики Ni скелетного катализатора и квантохимическое моделирование межмолекулярного взаимодействия молекулы тиофена с данным катализатором. Показано, что на дифрактограмме исходного сплава (Ni –51,1%, Al – 46,9%, Fe – 0,075%, Cr – 0,893%, Ti – 0,914%) присутствуют линии трех фаз Al<sub>3</sub>Ni<sub>2</sub> (d=4,90724, d=3,51058, d=2,00717), Al<sub>3</sub>Ni (d=3,89633, d=2,16242, d=1,96977) и Al<sub>3</sub>Ti. После выщелачивания появляется новая фаза (d=2,0381, 1,7761), которая доказывает формирование скелетной структуры никеля. Для анализа структуры и оценки активности кластеров Ni<sub>n</sub>Al<sub>m</sub> при взаимодействии с молекулой тиофена, был проведен расчет их электронной структуры квантовохимическим методом ub3lyp/6-31g(d). Установлено, что при образования комплекса Ni<sub>4</sub> – Тиофен геометрия молекулы тиофена сильно искажается, молекула становится не плоской и связь С–S подвергается разрыву. Следовательно, никельскелетные катализаторы могут быть эффективными катализаторами удаления серы из состава нефтепродуктов.

Ключевые слова: сплав; скелетный катализатор; адсорбция; тиофен.

Введение. Благодаря своей высокой эффективности и селективности в молекулярной активации водорода, Ni скелетные катализаторы были применены в промышленных процессах для реакций гидрирования в течение нескольких десятилетий: гидрирования адипонитрила, гидрирование 2,4динтиротолуола для производства полиуретанов, а также алкилирование додециламинов для получения ПАВ. Исходный сплав обычно представляет собой Ni-Al 50:50 мас% и содержит смесь NiAl<sub>3</sub>, Ni<sub>2</sub>Al<sub>3</sub> и Al-NiAl<sub>3</sub> эвтектических фаз, в соответствии с бинарной фазовой диаграммой [1, 2]. Эвтектическая фаза и NiAl<sub>3</sub> очень активны по отношению к раствору гидроксида натрия и легко потеряет алюминия во время процесса выщелачивания, что приводит к образованию скелетного никеля. Фаза Ni<sub>2</sub>Al<sub>3</sub> медленнее реагирует, но алюминий может быть удален при 50°С и полностью разлагается в кипящем щелочном растворе. Сплав обычно содержит небольшое количество эвтектики и несколько более Ni<sub>2</sub>Al<sub>3</sub> чем NiAl<sub>3</sub>. Несмотря на то, что традиционный Ni скелетный проявляет высокую активность при гидрировании двойных связей, одним из наиболее существенных недостатков является его непрочность при сжатии, что ограничивает его применение в реакторе с неподвижным слоем катализатора.

В работе исследуются особенности синтеза и фазовый состав никель – скелетных катализаторов и квантово-химическое моделирование межмоле-

кулярного взаимодействия молекулы тиофена с ними, так как тиофены и его производные являются наиболее устойчивыми по термодинамическим расчетам равновесных составов серосодержащих модельных соединений.

## Экспериментальная часть

Объектом исследования являлся Ni-скелетный катализатор, полученный из сплава (Ni –51,1%, Al – 46,9%, Fe – 0,075%, Cr – 0,893%, Ti – 0,914%). Для приготовления скелетного никелевого катализатора методом полного выщелачивания, сплав измельчают в ступке и просеивают. Затем определенная фракция порошка массой 1 г обрабатывается в колбе Кьельдаля 20% раствором гидроксида натрия при нагревании в водяной бане в течение 2 ч, после чего щелочь сливается и полученный таким образом порошок промывается декантацией дистиллированной водой

Дифрактограммы образцов различного состава были получены на дифрактометре ДРОН-3М с применением медного излучения. Режим съемки образцов следующие: напряжение на рентгеновской трубке 30 kV, ток трубки 30 mA, шаг движения гониометра 0.05° 20 и время замера интенсивности в точке – 1.0 с. Врашение образца в собственной плоскости 60 об/мин.

## Результаты и их обсуждение

С помощью элементного анализа идентифицированы дополнительные металлические компоненты исходного сплава (таблица 1) и доказывает наличие легирующих добавок (Fe, Cr, Ti).

| N⁰ | Элемент | Концентрация, % | Интенсивность, cps. |
|----|---------|-----------------|---------------------|
| 1  | Ni      | 51.1            | 1795.73             |
| 2  | Fe      | 0.075           | 3.95                |
| 3  | Cr      | 0.893           | 36.97               |
| 4  | Ti      | 0,914           | 22.54               |
| 5  | Al      | 46.9            | 1.28                |

Таблица 1 – Элементный состав исходного сплава

В результате выщелачивания сплава образуются никель и другие побочные продукты алюминидов никеля. Предполагается, что формирование чистого никеля происходит за счет разрушения фаз Ni<sub>2</sub>Al<sub>3</sub> и одновременно с неразрушенными частицами различных диаметров. Был проведен фазовый анализ исходного сплава и конечного катализатора на дифрактометре ДРОН-3М в цифровом виде с применением медного излучения (таблица 2).

# ХИМИЧЕСКИЙ ЖУРНАЛ КАЗАХСТАНА



Рисунок 1 – Элементный составсплава Ni/Al

| Angle<br>2-Theta ° | d value<br>Angstrom | Intensity<br>Count | Phase                           |
|--------------------|---------------------|--------------------|---------------------------------|
| 1                  | 2                   | 3                  | 4                               |
| 18,062             | 4,90724             | 1004               | Al <sub>3</sub> Ni <sub>2</sub> |
| 22,017             | 4,03385             | 498                | Al <sub>3</sub> Ni              |
| 22,805             | 3,89633             | 618                | Al <sub>3</sub> Ni              |
| 24,147             | 3,68272             | 573                | Al <sub>3</sub> Ni              |
| 25,350             | 3,51058             | 1176               | Al <sub>3</sub> Ni <sub>2</sub> |
| 29,583             | 3,01721             | 540                | Al <sub>3</sub> Ni              |
| 31,376             | 2,84872             | 921                | Al <sub>3</sub> Ni <sub>2</sub> |
| 35,111             | 2,55379             | 499                | Al <sub>3</sub> Ni              |
| 36,501             | 2,45970             | 588                | Al <sub>3</sub> Ni              |
| 37,335             | 2,40665             | 478                | Al <sub>3</sub> Ni              |
| 39,301             | 2,29065             | 885                | Al <sub>3</sub> Ti              |
| 41,167             | 2,19102             | 692                | Al <sub>3</sub> Ni              |
| 41,737             | 2,16242             | 798                | Al <sub>3</sub> Ni              |
| 43,577             | 2,07528             | 845                | Al <sub>3</sub> Ni              |
| 44,800             | 2,02141             | 1902               | Al <sub>3</sub> Ni <sub>2</sub> |
| 45,135             | 2,00717             | 2780               | Al <sub>3</sub> Ni <sub>2</sub> |
| 46,041             | 1,96977             | 723                | Al <sub>3</sub> Ni              |

| Габлица 2 – Рентгенометрические данные исходного сплан |
|--------------------------------------------------------|
|--------------------------------------------------------|

| Продолжение таблицы 2 |         |      |                                 |
|-----------------------|---------|------|---------------------------------|
| 1                     | 2       | 3    | 4                               |
| 47,089                | 1,92835 | 719  | Al <sub>3</sub> Ni              |
| 48,346                | 1,88112 | 570  | Al <sub>3</sub> Ni              |
| 48,672                | 1,86928 | 771  | Al <sub>3</sub> Ni <sub>2</sub> |
| 49,501                | 1,83990 | 557  | Al <sub>3</sub> Ni              |
| 50,642                | 1,80107 | 476  | Al <sub>3</sub> Ni <sub>2</sub> |
| 51,818                | 1,76294 | 488  | Al <sub>3</sub> Ni <sub>2</sub> |
| 52,235                | 1,74982 | 542  | Al <sub>3</sub> Ni              |
| 55,623                | 1,65099 | 541  | Al <sub>3</sub> Ni <sub>2</sub> |
| 58,956                | 1,56536 | 495  | Al <sub>3</sub> Ni              |
| 59,411                | 1,55446 | 504  | Al <sub>3</sub> Ni              |
| 60,567                | 1,52752 | 541  | Al <sub>3</sub> Ni              |
| 62,766                | 1,47920 | 525  | Al <sub>3</sub> Ni <sub>2</sub> |
| 63,597                | 1,46185 | 514  | Al <sub>3</sub> Ni              |
| 65,477                | 1,42435 | 964  | Al <sub>3</sub> Ni <sub>2</sub> |
| 69,219                | 1,35621 | 618  | Al <sub>3</sub> Ni              |
| 69,948                | 1,34384 | 537  | Al <sub>3</sub> Ni              |
| 71,207                | 1,32315 | 518  | Al <sub>3</sub> Ni <sub>2</sub> |
| 74,095                | 1,27855 | 535  | Al <sub>3</sub> Ni <sub>2</sub> |
| 78,050                | 1,22336 | 584  | Al <sub>3</sub> Ni <sub>2</sub> |
| 80,371                | 1,19378 | 571  | Al <sub>3</sub> Ni              |
| 82,770                | 1,16515 | 1020 | Al <sub>3</sub> Ni <sub>2</sub> |
| 83,622                | 1,15544 | 674  | Al <sub>3</sub> Ni <sub>2</sub> |
| 85,381                | 1,13608 | 598  | Al <sub>3</sub> Ni <sub>2</sub> |

Из данных таблицы 2 видны значения рефлексов, интенсивность и соответствующая фаза. На дифрактограмме образца присутствуют линии трех фаз. Основной фазой образца является  $Al_3Ni_2(d=4,90724, d=3,51058, d=2,00717)$ , вторая фаза  $Al_3Ni$  (d=3,89633, d=2,16242, d=1,96977) присутствует в меньшем количестве. Третья фаза характеризуется одной линией небольшой интенсивности с d=2,2906 Å и хорошо совпадает с самой интенсивной линией соединения  $Al_3Ti$ .

При выщелачивании разрушение алюминидовNi<sub>2</sub>Al<sub>3</sub> и NiAl<sub>3</sub> привело к возникновению новой основной фазы, которая состоит из никеля. Это подтверждается тем, что на дифрактограмме имеется большой фон, характерный для получения рентгенограммы никельсодержащей фазы на медном излучении. Никель образует гранецентрированную кубическую решетку с периодом a = 0,35352 нм.



Рисунок 2 – ДифрактограммаNi скелетного катализатора

В ходе растворения фаз Ni<sub>2</sub>Al<sub>3</sub> и NiAl<sub>3</sub>обнаруживается изменение спектра рентгеновских линий. При выщелачивании наблюдается исчезновение рефлексов с малой интенсивностью, например исчезновение рентгеновских линий с d= 3,8963, d=3,6827, d=3,0172, которые соответствуют второй фазе Al<sub>3</sub>Ni. В этой же стадии активации на рентгенограммах наблюдается появление линии Ni с d= 2,0381, 1,7761, 1,2489, 1,0667 нм вместо фаз Ni<sub>2</sub>Al<sub>3</sub> с большой интенсивностью (таблица 3). Таким образом, это может свидетельствовать об удалении неблагородных компонентов из состава фазы и формировании скелетного никеля в качестве основной фазы. Параметр кристаллической решетки никеля равен a=3,5352 Å, размер кристаллитов никеля – L=40 Å.

| Angle<br>2-Theta ° | d value<br>Angstrom | Intensity<br>Count | Phase |
|--------------------|---------------------|--------------------|-------|
| 44,413             | 2,0381              | 1542               | Ni    |
| 51,407             | 1,7761              | 922                | Ni    |
| 62,401             | 1,4870              | 806                | -     |
| 76,160             | 1,2489              | 837                | Ni    |
| 92,462             | 1,0667              | 845                | Ni    |

Таблица 3 – Рентгенометрические данные Ni скелетного катализатора

Для анализа структуры и оценки активности кластеров Ni<sub>n</sub>Al<sub>m</sub> при взаимодействии с молекулой тиофена, мы проводили расчет их электронной структуры квантово-химическим методом ub3lyp/6-31g(d) [3].Энергию кластеров Е представили как сумму электронной энергии E<sub>elec</sub> и энергии нулевых колебаний E<sub>ZPE</sub> кластеров:

$$E = E_{elec} + E_{ZPE}$$



Рисунок 3 – Результаты квантово-химических расчетов кластера  $Ni_2Al_3$  и его димера  $Ni_4Al_6$ 

Рассчитывали энергию адсорбции тиофена  $E_{ad}$  и изменение его геометрических параметров на исследованных кластерах. Так же, для анализа, построили их IR-спектры в координатах (интенсивность, см<sup>-1</sup>) и (интенсивность, GHz), что очень важно при волновом воздействии на удаление серы. На рисунке 3 приведены оптимизированные структуры и IR-спектры кластера Ni<sub>2</sub>Al<sub>3</sub> и его димера Ni<sub>4</sub>Al<sub>6</sub>.IR-спектр кластера Ni<sub>2</sub>Al<sub>3</sub> состоит из одной линии, с частотой 270.66 см<sup>-1</sup>, которая соответствует колебанию связи Ni–Ni. В спектре димера линии с частотой 132.10 и 376.31 см<sup>-1</sup> соответствуют деформационным колебаниям, а линия с частотой 449.70 см<sup>-1</sup> валентным колебаниям связей Al – Ni. Тепловой эффект реакции составляет – 32.09 ккал/моль.

$$2Ni_2Al_3 \rightarrow Ni_4Al_6$$

На рисунке 4 представлена оптимизированная структура молекулы тиофена и ее IR-спектры в координатах см<sup>-1</sup> и частот GHz. На спектре частота 838.41 см<sup>-1</sup> соответствует валентным колебаниям связей С – S. Представляет интерес сравнительный анализ результатов взаимодействия кластеров Ni<sub>2</sub>Al<sub>3</sub> и Ni<sub>5</sub> с молекулой тиофена. На рисунке 4 приведены результаты квантово-химических расчетов структуры кластера Ni<sub>5</sub> и комплекса Ni<sub>5</sub>-тиофен, ХИМИЧЕСКИЙ ЖУРНАЛ КАЗАХСТАНА

![](_page_7_Figure_1.jpeg)

Рисунок 4 - Результаты квантово-химических расчетов структуры тиофена

![](_page_7_Figure_3.jpeg)

Рисунок 5 – Результаты квантово-химических расчетов структуры кластера  $Ni_5$ и комплекса  $Ni_5$ -тиофен

![](_page_8_Figure_2.jpeg)

Рисунок 6 – Оптимизированная геометрия комплексов  $Ni_2Al_3$  – тиофен и  $Ni_4$  – тиофен

а также их IR-спектры. Как видно, тиофен адсорбируется на гран кластера  $Ni_5$  и при этом структура молекулы сильно искажается. Двугранный угол HCCH составляет 44.65° и угол SCCC – 26.70° (в изолированной молекуле оба углы равны 0°).

Энергия адсорбции тиофена над кластером Ni<sub>5</sub>составляет:

 $\Delta E_{ad} = E(Ni_5 - тиофен) - E(тиофен) - E(Ni_5) = -82.9 ккал/моль$ 

Тогда как по данным рис.2 и рис. 5 энергия адсорбции тиофена на кластере Ni<sub>2</sub>Al<sub>3</sub> составляет:

 $\Delta E_{ad} = E(Ni_2Al_3 - тиофен) - E(тиофен) - E(Ni_2Al_3) = -26.2 ккал/моль$ 

Следовательно, тиофен лучше адсорбируется на кластере Ni<sub>5</sub>, чем на Ni<sub>2</sub>Al<sub>3</sub> и больше подвержен к деструкции.

На рисунке 5 также представлена оптимизированная геометрия комплекса Ni<sub>4</sub> – Тиофен рассчитанная квантово-химическим методом b3lyp/6-311++g(d) [4] в приближении «супермолекула». Видно, что при образования комплекса геометрия молекулы сильно искажается, молекула становится не плоской и связь C–S подвергается разрыву.

Выводы. Таким образом, что при образования комплек-са Ni<sub>4</sub> – тиофен геометрия молекулы тиофена сильно искажается, молекула становится не плоской и связь С – S подвергается разрыву. Следовательно, никельскелетные катализаторы могут быть эффективными катализаторами удаления серы. По результатам рентгенофазового анализа, образование скелетного никеля в качестве активной фазы происходит при удалении неблагородных компонентов из состава исходного сплава.

#### ЛИТЕРАТУРА

[1] Singleton M.F., Murray J.L., Nash P., Massalki T.B. // Binary Alloys Phase Diagrams. – Vol. 1. ASM International, 1990. – P. 183. – ISBN 0-87170-404-8.

[2] Devred F. Raney-type nickel catalysts. Powder metallurgy. – Impress Project, 2004. – P. 22.
[3] Gyulmaliev A.M., Golovin G.S., Gladun T.G. Theratical Groundc of Chemistry Coal. –

M.: Publishing house of Moscow state mining unversity, 2003. – 556 p.
 [4] GAMESS v.7.1.GranovskyA.A.http://classic.chem.msu.su/ gran/games/index.html.

#### REFERENCES

[1] Singleton M.F., Murray J.L., Nash P., Massalki T.B. // Binary Alloys Phase Diagrams. Vol. 1. ASM International, 1990. P. 183. ISBN 0-87170-404-8.

[2] Devred F. Raney-type nickel catalysts.Powder metallurgy. Impress Project, 2004. P. 22.

[3] Gyulmaliev A.M., Golovin G.S., Gladun T.G. Theratical Groundc of Chemistry Coal. M.: Publishing house of Moscow state mining unversity, 2003. 556 p.

[4] GAMESS v.7.1.GranovskyA.A.http://classic.chem.msu.su/ gran/games/index.html.

#### Резюме

Ж. К. Мылтыкбаева, Ж. К. Каирбеков, А. М. Гюльмалиев, Т. М. Әндіжанова, Д. К Кансейтова

## КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ АДСОРБЦИИ ТИОФЕНА НА NI СКЕЛЕТНОМ КАТАЛИЗАТОРЕ

#### Summary

Ж. К. Мылтыкбаева, Ж. К. Каирбеков, А. М. Гюльмалиев, Т. М. Әндіжанова, Д. К Кансейтова

## КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ АДСОРБЦИИ ТИОФЕНА НА NI СКЕЛЕТНОМ КАТАЛИЗАТОРЕ

| Омарова А.С., Корулькин Д.Ю., Музычкина Р.А. Модификация природных              |       |
|---------------------------------------------------------------------------------|-------|
| оксиантрахинонов кислотами                                                      | 358   |
| Мылтыкбаева Ж.К., Каирбеков Ж.К., Гюльмалиев А.М., Әндіжанова Т.М.,             |       |
| Кансейтова Д.К. Квантово-химическое моделирование адсорбции тиофена             |       |
| на Ni скелетном катализаторе                                                    | . 366 |
| Джусипбеков У.Ж., Нургалиева Г.О., Шакирова А.К., Баяхметова З.К.,              |       |
| Дуйсенбай Д., Торебеков О. Определение временных границ процесса взаимодействия |       |
| гуминовых соединений с хлоридом хрома                                           | . 375 |
| Ергожин Е.Е., Чалов Т.К., Ковригина Т.В., Мельников Е.А., Даулеткулова Н.Т.     |       |
| Синтез новых интерполимерных ионообменных мембран на основе тетраглицидиловых   |       |
| эфиров ароматических диаминов                                                   | 381   |
|                                                                                 |       |

## Информационные сообщения

| Информационное сообщение о проведении 12 октября 2016 года           |       |
|----------------------------------------------------------------------|-------|
| в АО «Институт химических наук имени А. Б. Бектурова» Международного |       |
| семинара-тренинга «SciFinder. The choice for chemistry research»     | . 387 |

### Юбилейные даты

| Закирову Бахтияру Сабиржановичу 70 лет | . 392 |
|----------------------------------------|-------|
|                                        |       |
| Интернет-подписка                      | 395   |

Редактор *Н. Ф. Федосенко* Верстка на компьютере *Д. Н. Калкабековой* 

Подписано в печать 28.10.2016. Формат 70х100 $^{1\!/}_{16}.$  24,9 п.л. Бумага офсетная. Тираж 500.

Типография ТОО «Luxe Media Group» г. Алматы, пр. Сейфуллина, 67<sup>4</sup>. Тел. 2234340