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Abstract. The nonperturbative quantization technique à la Heisenberg is applied for the

SU(3) gauge theory. The operator Yang-Mills equation and corresponding infinite set

of equations for all Green’s functions are considered. Gauge degrees of freedom are

splitted into two groups: (1) Aa
μ ∈ S U(2) × U(1) ⊂ S U(3); (2) coset degrees of freedom

S U(3)/S U(2) × U(1). Using some assumptions about 2- and 4-point Green’s functions,

the infinite set of equations is truncated to two equations. The first equation is the S U(2)×
U(1) Yang-Mills equation, and the second equation describes a gluon condensate formed

by coset fields. A flux tube solution describing longitudinal color electric fields stretched

between quark and antiquark located at the ± infinities is obtained. It is shown that the

dual Meissner effect appears in this solution: the electric field is pushed out from the

gluon condensate.

1 Introduction

One of the most important problems in modern physics is the problem of nonperturbative quantization.

For example, the problem appears when explaining confinement in quantum chromodynamics. The

problem is that force lines between a quark and an antiquark are confined into a flux tube and the field

strength decreases exponentially with distance from quarks. This situation is fundamentally different

from the situation with positive and negative charges in electrodynamics where the field strength

decreases as a power law. In the 1950’s, W. Heisenberg offered the procedure of nonperturbative

(NP) quantization for a nonlinear spinor field [1]. Here we apply Heisenberg’s idea to nonperturbative

quantization of SU(3) gauge fields. This talk is based on [2].

2 Nonperturbative quantization à la Heisenberg for non-Abelian gauge
theories

According to Heisenberg, the SU(3) Yang-Mills operator equations can be written as follows

DνF̂aμν = 0, (1)
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where F̂B
μν = ∂μÂ

B
ν − ∂νÂB

μ + g f BCDÂB
μ ÂD
ν is the field strength operator; ÂB

μ is the gauge potential

operator; B,C,D = 1, . . . ,N are the SU(3) color indices; g is the coupling constant; f BCD are the

structure constants for the SU(3) gauge group.

In order to solve this equation, we have to write an infinite set of equations for all Green’s functions〈
DνF̂Aμν(x)

〉
= 0, (2)〈

ÂB1
α1
(x1)DνF̂Aμν(x)

〉
= 0, (3)〈

ÂB1
α1
(x1)ÂB2

α2
(x2)DνF̂Aμν(x)

〉
= 0, (4)

. . . = 0, (5)〈
ÂB1
α1
(x1) . . . ÂBn

αn
(xn)DνF̂Aμν(x)

〉
= 0 (6)

. . . = 0. (7)

Here 〈(. . .)〉 = 〈Q |(. . .)|Q〉 and |Q〉 is a quantum state of a given physical system. For brevity, we

will write 〉 instead of |Q〉.
The solution of the full set of equations gives us full information on the quantum state |Q〉 and

field operators ÂB
μ . In this sense, we can say that the solution of the full set of equations is the solution

of the operator field equations. It is similar to such situation in probability theory: the knowledge of

probability density is equivalent to the knowledge of all averages of a given random variable.

2.1 Two-equation approximation

It is not possible to solve the infinite set of equations (2)-(7). Practically we have to truncate the set of

equations (2)-(7), and the truncated system will approximately describe the solution of the full system.

In order to do that, we will assume that in some physical situations all S U(3) degrees of freedom

can be decomposed into two groups. In the first group, the gauge fields Âa
μ = 〈Âa

μ〉 + iδÂa
μ ∈ S U(2) ×

U(1) ⊂ S U(3), where 〈Âa
μ〉 = Aa

μ will be treated as classical fields, and δÂa
μ are quantum fluctuations

around the classical field Aa
μ. In the second group, the gauge fields Am

μ ∈ S U(3)/S U(2) × U(1) are

pure quantum ones in the sense that 〈Âm
μ 〉 = 0.

We will consider physical systems where the quantum average of odd degrees of the gauge field

are zero, 〈(
Âm1
μ1
(x1) . . . Âm2k+1

μ2k+1
(x2k+1)

)〉
=

〈(
δÂa1
μ1
(x1) . . . δÂa2k+1

μ2k+1
(x2k+1)

)〉
= 0. (8)

The decomposition of field strengths F̂a
μν and F̂m

μν into (· · · )a and (· · · )m parts can be written as follows:

F̂a
μν = F̂ a

μν + g f amnÂm
μ Ân
ν, (9)

F̂m
μν = ∂[μÂm

ν] − g f amnÂa
[μÂ

n
ν] + g f mpqÂp

μ Â
q
ν. (10)

Here F̂ a
μν = ∂μÂ

a
ν − ∂νÂa

μ + g f abcÂb
μÂ

c
ν is the field strength tensor of the subgroup S U(2) × U(1);

ÂB
[μÂ

C
ν] = ÂB

μ ÂC
ν − ÂB

ν ÂC
μ is the antisymmetrization procedure; a, b, c, . . . are the subgroup indices

S U(2) × U(1), and m, n, p, . . . are the coset indices.
Let us consider the equation (2) for A = a. After algebraic manipulations, we have

D̃νF aμν −
(
m2

)abμν
Ab
ν +

(
μ2

)abμν
Ab
ν = jaμ, (11)

where D̃μ = ∂μ + g f abcAb
μ is the covariant derivative in the subgroup S U(2) × U(1). 2-point Green’s

functions for the gauge fields δÂa
μ ∈ S U(2) × U(1) and for the coset Am

μ ∈ S U(N)/S U(2) × U(1) are
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defined as

Gmnμν(y, x) =
〈
Âmμ(y)Ânν(x)

〉
, (12)

Gabμν(y, x) =
〈
δÂaμ(y)δÂbν(x)

〉
. (13)

Equation (2) for A = m gives us 〈
DνF̂mμν

〉
= 0. (14)

After tedious calculations, the equation (3) for A = m, B1 = r, α1 = α gives us

D̃νF aμν −
[(

m2
)abμν −

(
μ2

)abμν
]

Ab
ν = jaμ, (15)[

∂xν∂
xμGrmαν(y, x) − �xGrmαμ(y, x)

]
y=x
+

g f amn
{
−∂xν

[
Aaμ(x)Grnαν(y, x) − Aaν(x)Grnαμ(y, x)

]
y=x −

Aa
ν(x)

[
∂xμGrnαν(y, x) − ∂xνGrnαμ(y, x)

]
y=x
+

Grnα
ν(x, x)F aμν(x)

}
+g2 f amn f bnpAa

ν(x)
[
Abμ(x)Grpαν(x, x) − Abν(x)Grpαμ(x, x)

]
+

g2 f amn f apqGrnpqα μν
ν (x, x, x, x) = 0, (16)

where(
m2

)abμν
= −g2

[
f abc f cpqGpqμν − f amn f bnp

(
ημνGmp α

α −Gmpνμ
)]
, (17)

jaμ = −g f amn
{
∂xνGmnμν(x, x) +

[
∂xμGmn ν

ν (y, x) − ∂xνGmn μ
ν (y, x)

]
y=x

}
, (18)(

μ2
)abμν

= −g2
(

f abc f cdeGdeμν + ημν f adc f cbeGde α
α + f aec f cdbGedνμ

)
, (19)

and the 4-point Green’s function Gmnpq
μνρσ(x, y, z, u) =

〈
Âm
μ (x)Â

n
ν(y)Â

p
ρ(z)Â

q
σ(u)

〉
.

3 Scalar approximation for the condensate equation

Let us consider the case when all 2-point Green’s functions for coset degrees of freedom have the

same order and are approximately described by one function. In this case we can assume that every

2-point Green’s function can be approximately presented as

Gmnμν(y, x) ≈ CmnμνD(y, x), (20)

where Cmmμ
μ is a constant and D(x, x) is an averaged dispersion of quantum field Âm

μ . We use the

following Ansatz for Cmnμν

Cmnμν = δmnAμAν, (21)

AμAμ is a constant;Aμ∂μ = ∂μAμ = 0. In order to close the equation (16), we assume that a 4-point

Green’s function is a bilinear combination of 2-point Green’s functions:

Gmnpqαβμν(x, x, x, x) ≈ CmnpqαβμνD(x, x)
[
M2 − D(x, x)

]
, (22)

where Cmnpqαβμν and M2 are constants. After that point, we obtain the following equation for the

averaged dispersion of the coset quantum fields Âm
μ :

�xD(y, x)y=x −
(
m2
φ

)abμν
Aa
ν(x)A

b
μ(x)D(x, x) − λD(x, x)

[
M2 − D(x, x)

]
= 0, (23)
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where(
m2
φ

)abμν
= g2 f amn f bnmAμAν − ημνAαAα

3AαAα , (24)

λ = g2 f amn f apq Cmnpq μν
μν

3AαAα . (25)

The solution of this equation is sought in the form

D(y, x) = φ(y)φ(x). (26)

Substituting (26) into (23), we have the following equation for the gluon condensate φ formed by the

coset quantum gauge fields Am
μ ∈ S U(3)/S U(2) × U(1)

�φ −
(
m2
φ

)abμν
Aa
νA

b
μφ − λφ

(
M2 − φ2

)
= 0. (27)

4 SU(3) flux tube
In order to consider a flux tube solution describing force lines between a quark and an antiquark, let

us simplify the equation (29)

D̃νF aμν −
[(

m2
)abμν −

(
μ2

)abμν
]

Ab
ν = jaν, (28)

�φ −
(
m2
φ

)abμν
Aa
νA

b
μφ − λφ

(
M2 − φ2

)
= 0. (29)

4.1 Evaluation of
(
μ2

)abμν
,
(
m2

)abμν
, and

(
m2
φ

)abμν
for the flux tube solution

We will consider a physical system where 2-point Green’s functions can approximately be expressed

as follows:

Gabμν(y, x) ≈ ΔabBμBν, (30)

where BμBμ is a constant and

Δab =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
δ1 0 0

0 δ2 0

0 0 δ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (31)

From (31) we see that our system has some color anisotropy in the S U(2) subgroup: G11μν � G22μν �
G33μν. The vectorsAμ and Bμ are

Aμ =
(
0, 0, 0,

Aϕ
ρ

)
, (32)

Bμ =
(
0, 0,Bρ, Bϕ

ρ

)
. (33)

With such choice of the vectors Aa
μ and Bμ, we have(

μ2
)1btν

Ab
ν = g

2
(
B2
ρ + B2

ϕ

)
(δ2 + δ3) A1

t = μ21A1
t , (34)(

μ2
)2bzν

Ab
ν = −g2

(
B2
ρ + B2

ϕ

)
(δ1 + δ3) A2

z = −μ22A2
z , (35)(

m2
)1btν

Ab
ν =

(
3g2A2

ϕ

)
A1

t = m2A1
t , (36)(

m2
)2bzν

Ab
ν = −

(
3g2A2

ϕ

)
A2

z = −m2A2
z , (37)(

m2
φ

)abμν
Aa
νA

b
μ =
g2

4

[(
A1

t

)2 − (
A2

z

)2]
= m2

φ

[(
A1

t

)2 − (
A2

z

)2]
. (38)
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Insertion of (20) and (21) into (18) yields

jaμ = 0. (39)

4.2 Numerical solution for the flux tube

We choose the 4-potential in the form (in the cylindrical coordinate system t, z, ρ, ϕ)

A1
t (ρ) =

f (ρ)
g

; A2
z (ρ) =

v(ρ)

g
; φ(ρ) = φ(ρ). (40)

The corresponding color electric and magnetic fields are then

E3
z (ρ) = F3

tz =
f (ρ)v(ρ)
g

, (41)

E1
ρ(ρ) = F1

tρ = −
f ′(ρ)
g
, (42)

H2
ϕ(ρ) = ρεϕρzF2ρz = −ρv

′(ρ)
g
. (43)

Substituting (40) into the equations (28) and (29) (and after redefining φ = φ̃/m, M = M̃/m, and

λ = m4λ̃/g), we have

f ′′ +
f ′

ρ
= f

(
−v2 + φ̃2 − μ21

)
, (44)

v′′ +
v′

ρ
= v

(
f 2 + φ̃2 − μ22

)
, (45)

φ̃′′ +
φ̃′

ρ
=

m2
φ

g2
φ̃
[
− f 2 + v2 + λ̃

(
φ̃2 − M2

)]
. (46)

Here the prime denotes differentiation with respect to ρ. Equations (44)-(46) are solved as a non-

linear eigenvalue problem with the eigenvalues μ1,2,M and the eigenfunctions f , v, φ̃. The boundary
conditions are

f (0) = 0.2, f ′(0) = 0;

v(0) = 0.5, v′(0) = 0;

φ(0) = 1.0, φ′(0) = 0. (47)

The results of calculations are presented in figures 1 and 2.

From (44)-(46) we can obtain the asymptotic behavior of the functions f (ρ), v(x), and φ̃(ρ):

f (ρ) ≈ f0
e−ρ

√
M2−μ2

1√
ρ

, (48)

v(ρ) ≈ v0
e−ρ

√
M2−μ2

2√
ρ

, (49)

φ̃(ρ) ≈ M − φ0 e−ρ
√
2λM2

√
ρ
, (50)

where f0, v0, and φ0 are some constants. The flux of the longitudinal electric field is

Φ =

∫
E3

z ds =
2π

g

∫ ∞

0

ρ f (ρ)v(ρ)dρ < ∞. (51)
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Figure 1. The functions f (ρ), v(ρ), φ̃(ρ). The

solid curve is f (ρ), the dashed curve is v(ρ), the

dotted curve is φ̃(ρ). μ1 = 1.0956253, μ2 =

1.1494285,M = 1.19505, λ̃ = 0.1.
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Figure 2. The chromoelectric and chromomag-

netic fields E3
z (ρ), E

1
ρ(ρ),H

2
ϕ(ρ). The solid curve is

E3
z (ρ), the dashed curve is E1

ρ(ρ), the dotted curve

is H2
ϕ(ρ)

5 Discussion and conclusions

• Nonperturbative quantization à la Heisenberg for QCD has been offered.

• After some simplified assumptions, the two-equation approximation has been obtained.

• The first equation is for gauge fields from a subgroup, the second one is for quantum coset fields.

• Applications: a flux tube solution, a scalar model of glueball, and the dual Meissner effect.
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