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Abstract. In this work, we prove unique solvability of a boundary-value problem of magnetohydrodynamics in Sobolev and
Hölder spases.
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INTRODUCTION

In this work, we study the problem on a viscous incompressible fluid fills a bounded vessel Ω ⊂ R3 with a perfectly
conducting boundary S. In Ω, an exterior force f⃗ (x) acting on the fluid and electric current of density j⃗(x) are defined.
One must find the velocity vector field υ⃗(x) and the pressure function p(x), as well as the magnetic and electric fields,
H⃗ (x) and E⃗ (x).

The steady motion of a viscous incompressible electrically conducting fluids is described by the following system
of equations of magnetohydrodynamics consisting of Navier-Stokes equations

−ν∆υ⃗ (x)+
3

∑
k=1

(
υkυ⃗xk −

µ
ρ

HkH⃗xk

)
+

1
ρ

∇
(

p(x)+
µ
2

∣∣∣H⃗ (x)
∣∣∣2)= f⃗ (x) , x ∈ Ω, (1)

divυ⃗ (x) = 0, x ∈ Ω, (2)

and Maxwell’s equations without displacement current

rotH⃗ (x)−σ
(

E⃗ (x)+µ
[
υ⃗ × H⃗

])
= j⃗ (x) , x ∈ Ω, (3)

divµH⃗ (x) = 0, x ∈ Ω, (4)

rotE⃗ (x) = 0, x ∈ Ω (5)

with given f⃗ (x) and j⃗(x). Here, the magnetic permeability of a fluid µ , the conductivity σ , the kinematic coefficient
of viscosity ν and the density ρ are given positive constants. The studying problem consists to find solutions of (1)-(4)
in Ω, satisfying the following boundary conditions on S:

υ⃗ (x) |S = 0 , E⃗τ (x) |S = 0 , H⃗ · n⃗ |S = 0 , (6)

where n⃗ is the unit outward normal to S, and E⃗τ = E⃗ − n⃗
(⃗

n · E⃗
)

.
Authors [1] have studied problem (1)-(6) passing to the generalized statement, i.e. boundary conditions replaced by

the requirement of belonging of unknown vector functions in some functional Hilbert spaces and other equations by
integral identities. The theorem of existence and uniqueness of generalized solutions of problem (1) - (6) in the space
L2 (Ω) was proved in [2]. The existence of weak solution to the problem was studied in [2]. We extended these results
as p ≥ 3

2 in a bounded domain up to the boundary.
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AUXILIARY PROPOSITIONS AND MAIN RESULTS

We note that the passing to a generalized statement requires a number of auxiliary propositions proved in [1], which
we refer in the right places.

Definition 1. Let H(Ω) be the space of solenoidal vector functions of φ⃗ ∈
◦

W 1
2 (Ω), i. e.,

H(Ω) :=
{

φ⃗ ∈
◦

W 1
2 (Ω) : divφ⃗ = 0 in Ω, and φ⃗ = 0 on S

}
.

Definition 2. Let H1 (Ω) be the space of solenoidal vector functions of φ⃗ ∈W 1
2 (Ω), i. e.,

H1 (Ω) :=
{

φ⃗ ∈W 1
2 (Ω) : divφ⃗ = 0 in Ω, and φ⃗n ≡ φ⃗ · n⃗ = 0 on S

}
.

Definition 3. A pair of functions
(

υ⃗ , H⃗
)

is called a generalized solution of problem (1)-(6), if υ⃗ (x) ∈ H(Ω) and

H⃗ (x) ∈ H1 (Ω) and for any φ⃗ ∈ H(Ω) and ψ⃗ ∈ H1 (Ω) hold the following integral identities

ν
∫
Ω

∇υ⃗∇φ⃗dx−
∫
Ω

υ⃗ (υ⃗ ·∇) φ⃗dx+
µ
ρ

∫
Ω

H⃗
(

H⃗ ·∇
)

φ⃗dx =
∫
Ω

f⃗ φ⃗dx, (7)

1
σ

∫
Ω

rotH⃗rotψ⃗dx−
∫
Ω

µ
[
υ⃗ × H⃗

]
rotψ⃗dx =

1
σ

∫
Ω

j⃗rotψ⃗dx. (8)

For problem (1)-(6), the following theorem holds.

Theorem 1. Let S ∈ C3. If f⃗ (x) ∈ Lp (Ω), j⃗ (x) ∈ W 1
p (Ω) with p ≥ 6

5 , then the generalized solution of problem (1)-
(6) belongs to W 2

p (Ω)×W 2
p (Ω), and there exist ∇p(x) ∈ Lp (Ω) and E⃗ (x) ∈ W 1

p (Ω) such that equations (1)-(2) are
satisfied, and the following estimate holds

∥υ⃗∥W 2
p (Ω)+

∥∥∥H⃗
∥∥∥

W 2
p (Ω)

+∥∇p∥Lp(Ω)+
∥∥∥E⃗
∥∥∥

W 2
p (Ω)

≤C
(∥∥∥ f⃗

∥∥∥
Lp(Ω)

+
∥∥∥ j⃗
∥∥∥

W 1
p (Ω)

+
∥∥∥ f⃗
∥∥∥8

Lp(Ω)
+
∥∥∥ j⃗
∥∥∥8

W 1
p (Ω)

)
.

(9)

Theorem 2. Let S ∈C2+α . If f⃗ (x) ∈Cα (Ω), j⃗ (x) ∈C1+α (Ω), α ∈ (0,1), then υ⃗ (x) ∈C2+α (Ω), H⃗ (x) ∈C2+α (Ω),
∇p(x) ∈Cα (Ω), E⃗ (x) ∈C1+α (Ω) and the following estimate is valid

∥υ⃗∥C2+α (Ω)+
∥∥∥H⃗
∥∥∥

C2+α (Ω)
+∥∇p∥Cα (Ω)+

∥∥∥E⃗
∥∥∥

C1+α (Ω)

≤C
(∥∥∥ f⃗

∥∥∥
Cα (Ω)

+
∥∥∥ j⃗
∥∥∥

C1+α (Ω)
+
∥∥∥ f⃗
∥∥∥16

Cα (Ω)
+
∥∥∥ j⃗
∥∥∥16

C1+α (Ω)

)
.

(10)

Proof. The proofs of these theorems are based on the results of propositions given below and the smoothness of the
generalized solution to Stokes problem [1]. We also use the following new estimate for nonlinear terms in equations
of magnetohydrodynamics. For υ⃗ , H⃗ ∈W 1

2 (Ω)⊂ L6 (Ω), we have

∥(υ⃗ ·∇) υ⃗∥L3/2(Ω) ≤ ∥υ⃗∥L6(Ω) ∥∇υ⃗∥L2(Ω) ≤ c∥υ⃗∥2
W 1

2 (Ω) .∥∥∥(H⃗ ·∇
)

H⃗
∥∥∥

L3/2(Ω)
+
∥∥∥∇H⃗

∥∥∥
L3/2(Ω)

≤
∥∥∥H⃗
∥∥∥

L6(Ω)

∥∥∥∇H⃗
∥∥∥

L2(Ω)
≤C

∥∥∥H⃗
∥∥∥2

W 1
2 (Ω)

.

We begin the proof of Theorem 1 from the transfers relations (7), (8) as follows: First, we rewrite (7) in the form

ν
∫

Ω
∇υ⃗∇φ⃗dx =

∫
Ω

F⃗φ⃗dx, ∀φ⃗ ∈ H (Ω) , (11)
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where F⃗ ≡ f⃗ − (υ⃗ ·∇) υ⃗ + µ
ρ

(
H⃗∇
)

H⃗.
Before we transform (8), we recall Weyl’s orthogonal decomposition of the space L2 (Ω) of square summable vector

fields [3], [4]:

L2 (Ω) =
0
G(Ω)⊕ J (Ω) , (12)

where
◦
G(Ω) =

{
u = ∇ϕ , ϕ ∈

◦
W 1

2 (Ω)
}

, and J (Ω) is the solenoidal vector fields from L2 (Ω) (i.e. orthogonal to any

∇ϕ , ϕ ∈
◦

W 1
2 (Ω)).

Let PJ be orthogonal projection to the space J (Ω). It is clearly, we have that ∥PJ∥L2→L2
≤ 1. Moreover, following

propositions [1] hold:

Proposition 3. If F⃗ ∈ Lq (Ω) , q ≥ 6
5 in (14), then υ⃗ ∈W 2

q (Ω) and satisfies the following inequality:

∥υ⃗∥W 2
q (Ω) ≤ c

∥∥∥F⃗
∥∥∥

Lq(Ω)
.

Moreover, there is exists a function ∇p ∈ Lq (Ω) such that

−ν∆υ⃗ +
1
ρ

∇

(
p+

µH⃗2

2

)
= f⃗ (x)

and
∥∇p∥Lq(Ω) ≤ c

∥∥∥F⃗
∥∥∥

Lq(Ω)
.

Proposition 4. If u⃗(x) ∈W k
q (Ω), k = 0,1 , then PJ u⃗(x) ∈W k

q (Ω) and

∥PJ u⃗∥W k
q (Ω) ≤ c ∥⃗u∥W k

q (Ω) , k = 0, 1. (13)

Proposition 5. For any vector function ξ⃗ (x) ∈ J (Ω)
∩

W 1
p (Ω) the problem

rotH⃗ (x) = ξ⃗ (x) , divH⃗ (x) = 0, x ∈ Ω, H⃗ · n⃗ |S = 0 (14)

has a unique solution H⃗ (x) ∈W 2
p (Ω) and the following estimate holds∥∥∥H⃗

∥∥∥
W 2

p (Ω)
≤ c
∥∥∥ξ⃗
∥∥∥

W 1
p (Ω)

. (15)

By identity (8), the expression 1
σ rotH⃗ − µ

[
υ⃗ × H⃗

]
− 1

σ j⃗ is orthogonal to all functions rotψ⃗ , ψ⃗ ∈ H1 (Ω) i.e. all

functions ξ⃗ (x) ∈ J (Ω). Hence,

1
σ

rotH⃗ −µ
[
υ⃗ × H⃗

]
− 1

σ
j⃗ = ∇ϕ , ϕ ∈

0
W 1

2 (Ω) . (16)

Formula (16) can be treated as the orthogonal decomposition (12) for the vector function g⃗(x) = 1
σ j⃗+µ

[
υ⃗ × H⃗

]
.

Remark 1. We can take E⃗ (x) = ∇ϕ in (16).

It follows from (16) that

g⃗(x) =
1
σ

rotH⃗ −∇ϕ , −∇ϕ ∈
◦
G(Ω) ,

1
σ

rotH⃗ ∈
◦
J (Ω) . (17)

If g⃗(x) ∈W 1
q (Ω), then by Propositions 4 and 5 we have the following estimate∥∥∥H⃗

∥∥∥
W 2

q (Ω)
≤ c
∥∥∥rotH⃗

∥∥∥
W 1

q (Ω)
≤ c ∥⃗g∥W 1

q (Ω) .

020096-3



In this case, we can take the vector E⃗ (x) in the form E⃗ (x) = ∇ϕ = P◦
G

g⃗(x) and it satisfies the inequality [5]∥∥∥E⃗ (x)
∥∥∥

W 1
q (Ω)

≤ c ∥⃗g∥W 1
q (Ω) . (18)

Now, we prove inequality (9). Using the Hölder inequality∣∣∣∣∫Ω
νυdx

∣∣∣∣≤ ∥ν∥Ls(Ω) ∥υ∥Ls′ (Ω) ,
1
s
+

1
s′
= 1

we estimate nonlinear terms in (7) and (8). By the fact that υ⃗ , H⃗ ∈ L6 (Ω) , we have

∥(υ⃗∇) υ⃗∥L 3
2
(Ω) ≤

(∫
Ω
|⃗υ |

3
2 |∇υ⃗ |

3
2 dx
) 2

3
≤
(∫

Ω
|∇υ⃗ |2 dx

) 1
2
(∫

Ω
|⃗υ |6 dx

) 1
6
≤ c∥υ⃗∥2

W 1
2 (Ω) .

Similarly, we get ∥∥∥(H⃗∇
)

H⃗
∥∥∥

L 3
2
(Ω)

≤ c
∥∥∥H⃗
∥∥∥2

W 1
2 (Ω)

,

∥∥∥(υ⃗ × H⃗
)∥∥∥

W3
2
(Ω)

≤ c∥υ⃗∥2
W 1

2 (Ω)+
∥∥∥H⃗
∥∥∥2

W 1
2 (Ω)

.

Consequently,

F⃗ (x) = f⃗ − (υ⃗∇) υ⃗ +
µ
ρ

(
H⃗∇
)

H⃗ ∈ Lp1 (Ω) , for p1 = min
(

p,
3
2

)
and

g⃗(x) =
1
σ

j⃗ (x)+µ
[
υ⃗ × H⃗

]
∈W 1

p1
(Ω) , for p1 = min

(
p,

3
2

)
.

If p ≤ 3
2 , then estimate (9) follows from the estimates (12), (13), and (15).

Let p > 3
2 . Then, p1 =

3
2 and by (12), (13), and (15), we have

∥υ⃗∥W 2
3/2(Ω) ≤ c

∥∥∥F⃗
∥∥∥

L3/2(Ω)

and ∥∥∥H⃗
∥∥∥

W 2
3/2(Ω)

≤ c
∥∥∥rotH⃗

∥∥∥
W 1

3/2(Ω)
≤ c ∥⃗g∥W 2

3/2(Ω) .

Using this information, we estimate the nonlinear terms. By the embedding theorems, υ⃗ , H⃗ ∈ W 1
3 (Ω) and υ⃗ , H⃗ ∈

LQ (Ω) with an arbitrary large Q. We also have for any small θ > 0

∥(υ⃗∇) υ⃗∥L3−θ
≤

∫
Ω

|⃗υ |3−θ |∇υ⃗ |3−θ dx

 1
3−θ

≤

∫
Ω

|∇υ⃗ |3 dx

 1
3
∫

Ω

|⃗υ |θ dx

 1
θ

≤ c∥υ⃗∥2
W 2

3/2(Ω) ,

Q =
(3−θ)3

θ
=

9
θ
−3.

Likewise, we obtain inequalities ∥∥∥(H⃗∇
)

H⃗
∥∥∥

L3−θ (Ω)
≤ c
∥∥∥H⃗
∥∥∥2

W 2
3/2(Ω)

,

∥∥∥(υ⃗ × H⃗
)∥∥∥

W 1
3−θ (Ω)

≤ c

(
∥υ⃗∥2

W 1
3/2(Ω)+

∥∥∥H⃗
∥∥∥2

W 1
3/2(Ω)

)
.
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Consequently, F⃗ (x) ∈ Lp2 (Ω), g⃗(x) ∈W 1
p2
(Ω) with p2 = min(p,3−θ). In the case p ≤ 3−θ , it is sufficiently to

applied the estimates (5), (7), and (8). In the case p > 3− θ we have p2 = 3− θ , and υ⃗ , H⃗ ∈ W 2
3−θ (Ω). Therefore

υ⃗ , H⃗ ∈ W 2
Q1

(Ω) ñ 1
Q1

= 1
1− θ

3
− 1 = θ

3−θ , i.e. Q1 = 3−θ
θ . It is obviously that Q1 >> 1 for small θ . Moreover,

υ⃗ , H⃗ ∈ L∞ (Ω).
Estimating the nonlinear terms as above in the case υ⃗ , H⃗ ∈W 1

Q1
(Ω), υ⃗ , H⃗ ∈ L∞ (Ω), we see that they are summarable

with arbitrary large exponents. Therefore, F⃗ (x) ∈ Lp (Ω), g⃗(x) ∈W 1
p (Ω) and it means that υ⃗ , H⃗ ∈W 2

p (Ω). Thus the
proof of Theorem 1 is completed.

Theorem 2 can be proved in the analogical way as above. The rest of the proof proceeds as in the proof of Theorem
1, and we omit it.
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