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Numerical implementation of the method of fictitious
domains for elliptic equations

Almas N. Temirbekov

Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract. In the paper, we study the elliptical type equation with strongly changing coefficients. We are interested in studying
such equation because the given type equations are yielded when we use the fictitious domain method. In this paper we
suggest a special method for numerical solution of the elliptic equation with strongly changing coefficients. We have proved
the theorem for the assessment of developed iteration process convergence rate. We have developed computational algorithm
and numerical calculations have been done to illustrate the effectiveness of the suggested method.

Keywords: Elliptical equation, Dirichlet problem, The equation with rapidly changing coefficients, Computational algorithm, Iterative
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INTRODUCTION

It is efficient to use the fictitious domain method in irregular shape domains for numerical solutions of elliptical type
elliptical type equations.

Reference [1] suggests efficient (due to operations number) difference scheme of the second order accuracy,
alternately-triangular scheme for numerical solution of the elliptical equation. Modified alternately-triangular iteration
method with Chebyshev parameters of Dirichlet differential problem solution for the elliptical equation of the second-
order accuracy was made in reference [2]. V. I. Lebedev in his monograph [3] studied the use of composition method
for the solution of problems on characteristic constants, nonstationary problems, Dirichlet problems for biharmonic
equation and domain problems. Reference [4] studies stationary differential problem for Poisson’s equation with
piecewise constant coefficients in subdomains. Poisson’s equation on the boundary approximates in a specific way,
that is, the differential equation coefficients are selected as quotient which denominator contains coefficients sum in
subdomains. Two-phase iteration process based on domain partitioning method has been built.

Solving the Poisson equation for pressure is the main computing unit in the problems of hydrodynamics of an
incompressible fluid. In [5], a parallel implementation of the method of fictitious domains for the Poisson’s equation
in a three-dimensional region with a stepped-back is proposed. This method is based on the parallel implementation
of the fast algorithm for solving the Poisson equation in a parallelepiped. In [6], a variant of the method of collocation
and least residuals for the numerical solution of the Poisson equation in polar coordinates on a non-uniform grid
is proposed. In [7, 8], the method of fictitious domains is used for the numerical solution of elliptic equations with
complex geometry. Method of fictitious domain for the equations of mathematical physics was studied by A. N.
Bugrov, A. N. Konovalov, S. S. Smagulov, M. K. Orunhanov, R. Glowinski, V. Girauit and others [5–10]. In these
studies various modifications of the method of fictitious domain for the Navier-Stokes equations were investigated.

In the present paper, we suggest a specific method for numerical solution of the elliptical equation with strongly
changing coefficients. The basis of the suggested method is in the special replacement of variables which brings
the problem with second order discontinuous coefficients to the problem with first order discontinuous coefficients.
We have built the iteration process with two parameters which takes into account the equation coefficient ration
in subdomains. We have proved the theorem for the developed iteration process convergence rate assessment. We
have developed computational algorithm and made numerical calculations to illustrate the efficiency of the suggested
method.
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PROBLEM SETTING

Let Ω be a bounded domain in R2 with a piecewise-smooth boundary ∂Ω. For determination, let Ω =
Q1
∪

Q2, Q1
∩

Q2 = Γ, Q2 be strictly internal subdomain. We will study the elliptical equation

−div(k∇u) = f (⃗x), x⃗ ∈ Ω, (1)

in Ω with boundary condition
u(⃗x) = 0, x⃗ ∈ ∂Ω, (2)

where

k(⃗x) =
{

k1 = const, x⃗ ∈ Q1,
k2 = const, (⃗x), x ∈ Q2.

Function f (⃗x) is suggested as belonging to Hilbert space of real functions L2(Ω) and are determined in subdomains
with the following ways

f (⃗x) =
{

f (1)(x), x ∈ Q2,
0, x ∈ Q1.

We will make the replacement of variables u = 2ν/k1 in (1), simple transformations, and get

∆ν +div(ω∇ν) =− f (⃗x), (3)

where ω = 2k(x)
k1

−1. Let’s designate θ = 2k2
k1

−1.

We will introduce symbol p⃗ =
(

ω ∂ν
∂x1

, ω ∂ν
∂x2

)
and equation (3) will be written as equation system
∆ν +∇p⃗ =− f (⃗x),
p1/ω − ∂ν

∂x1
= 0,

p2/ω − ∂ν
∂x2

= 0.
(4)

COMPUTATIONAL ALGORITHM

For the numerical solution of equation system (4) with boundary conditions ν |∂Ω = 0, let’s study the iteration method

Bνn+1
t +∆hνn+1 +∇h p⃗n+1 =− f (⃗x), β (p⃗n+1 − p⃗n)+

p⃗n+1

ω
−∇hνn+1 = 0, (5)

where B is iteration method operator, β is iteration parameter, index h means difference analogue of differentiation
operator. Operator B in iteration method (5) is selected by the following way

B = (1− τ)∆h − τdiv(ρ∇h), (6)

where ρ = (β +1/ω)−1.

Let’s suppose that ν0 ∈
o

W
1

2(Ω) and p0 = ∇q, where q ∈
o

W
1

2. This condition is satisfied if (ν0, p0) = 0.

Further, we will consider that B > 0 on
o

W
1

2. It is enough to have the inequality

1− τ − τ
β

> 0. (7)

In case of B on
o

W
1

2, it satisfies operator inequality

−χ1∆ ≤ B ≤−χ2∆. (8)
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Constants χ1 and χ2 may be selected independent upon θ ≥ 1. Substituting operator B determined as (6) and (5), we
get

∆hνn+1 = F(x), (9)

p⃗n+1 = βρ p⃗n +ρ∇hνn+1, (10)

where
F (⃗x) = (1− τ)∆hνn − τdiv(βρ∇hνn)− τdivh(βρ p⃗n). (11)

We present numerical algorithm of method (9), (10). One step of iteration method (9), (10) consists in finding value
νn+1 due to known νn, p⃗n. For this, it is necessary to solve Dirichlet problem for Poisson’s equation (9) in Ω. After
that value p⃗n+1 upon the known p⃗n and νn+1 is counted using formula (10).

CONVERGENCE STUDYING

We assess convergence rate method (9), (10). Let’s designate {y,r} = {yn,rn} = {ν − νn, p − pn}, {ŷ, r̂} =
{yn+1,rn+1}. Then equations (5) can be rewritten as

(Byt ,ν)+(∇hŷ,∇hν)+(∇hr̂,ν) = 0 ∀ν ∈
o

W
1

2, (12)

βτrt + r̂/ω −∇hŷ = 0, (13)

where {y0,r0} ∈
o

W
1

2 ×L2. Here yt = (ŷ− y)/τ .
Let’s call function ψ from as L2 piecewise gradient if it can be presented as

ψ = ∇gi in Qi; where gi ∈W 1
2 (Qi), (14)

gi|∂Ω
∩

∂Ωi = 0, i = 1,2, ...,N

and call function ψ gradient if it is as the following

ψ = ∇g in Ω, where g ∈
o

W
1

2(Ω).

As p0 = ∇g, g ∈
o

W
1

2 and ω-is piecewise constant, r0 is piecewise gradient.
Let’s multiply both parts of equation (13) scalarly in L2 on 2τ r̂ and put ν = 2τ ŷ in correlation (12). Adding up the

obtained equalities, we have

∥ŷ∥2
B −∥y∥2

B + τ2∥yt∥2
B +2τ∥∇hŷ∥2 +βτ∥r̂∥2 −βτ∥r∥2 +βτ3∥rt∥2 +

2τ
ω

∥r̂∥2 = 0. (15)

Now, we will study rn. Since

τ̂ =
β

β +1/ω
r+

1
β +1/ω

∇ŷ,

and r is piecewise gradient function, τ̂ is also piecewise gradient. Thus, all rn are piecewise gradient.
Let G be the space of piecewise gradient functions, G1 be the space of gradient functions. It is obvious that G1 ⊆ G.

We will show that there is rigid embedding G1 ⊂ G and find the orthogonality in L2 of add-ins G1 to G. If ψ is
orthogonal in L2 to all elements G1, we have (ψ,∇q)Ω = 0 for any element ∇q ∈ G1. If function ∇g is smooth enough
and has carrier in Qi, then

(ψ ,∇g)Ω = (ψ,∇g)Qi =−(divψ,g)Qi =−(∆gi,g)Qi = 0.

Due to g-is arbitrary, the last correlation means that

∆gi = 0 in Qi. (16)
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It is evident that the correlation is done in each Qi, i = 1,2. Thus, element ψ ∈ G, orthogonal to all elements G1, will
be presented as (14), where qi is harmonic in Qi function. We will find the conditions to be satisfied by function ψ ,
orthogonal to G1 on Γ.

Let’s ∇q ∈ G1, then

0 = (ψ ,∇q)Ω = (∇q1,∇q)Q1 +(∇q2,∇q)Q2 =
∫
Γ

g
∂q1

∂n1
ds+

∫
Γ

g
∂q2

∂n2
ds =

∫
Γ

g
(

∂q1

∂n1
− ∂q2

∂n1

)
ds

where ni are inner normal vectors on ∂Qi. Therefore, values of normal compounds ψ1 = ∇q1 and ψ2 = ∇q2 on Γ
coincide. Thus, normal compound of vector-function ψ is continuous (in integral sense) at the transfer through Γ.
It follows that orthogonal in L2 add-ins G2 of space G1 to G consists of all vector-functions of type (14), normal
compound of which is continuous during the transfer through adjacent boundaries, and the forming functions gi are
harmonic in Qi.

We continue to study iteration method convergence (9), (10). It was stated that r̂ ∈ G. Let’s present r̂ as r̂ = q̂+ ĥ,
where q̂ ∈ G1 and ĥ ∈ G2. Then, correlation (12) is as the following

(Byt ,ν)+(∇ŷ,∇ν)+(q̂,∇ν)+(ĥ,∇ν) = 0 (17)

for all ν ∈
o

W
1

2.
The last scalar product in (17) equals nought because ∇ν ∈ G1. Having divided both parts (17) in ∥∇ν∥ and having

assessed the term containing q̂, we get

|(q̂,∇ν)|
∥∇ν∥

≤ |(Byt ,ν)|
∥∇ν∥

+
|(∇ŷ,∇ν)|
∥∇ν∥

≤
√

χ2∥yt∥B +∥∇hŷ∥.

As soon as the right part of this inequality is independent upon ν ∈
o

W
1

2, and q̂ ∈ G1, that is, it is presented as

q̂ = ∇g(g ∈
o

W
1

2), taking sup on ν in the left part of the inequality, we get the assessment

∥q̂∥ ≤
√

χ2∥yt∥B +∥∇hŷ∥,

where ∥∇hŷ∥= ∥ŷ∥1. Let’s square both parts of this inequality and assess the right part

∥q̂∥2 ≤ 2(χ2∥yt∥2
B +∥∇hŷ∥2).

Multiplying the last equation by βτ2µ ( λ > 0 is arbitrary) adding to (15), we have

∥ŷ∥2
B + τ2(1−2βλ χ2)∥yt∥2

B +2τ(1−βτλ )∥∇hŷ∥2

+βτ2λ∥q̂∥2 +2τ
(
r̂, r̂

ω
)
+βτ∥r̂∥2 ≤ ∥y∥2

B +βτ∥r∥2.
(18)

Let’s assess scalar product (r̂, r̂/ω). For any δ , 0 < δ < 1 the following inequalities are true(
r̂
ω
, r̂
)

≥
(

q̂
ω
, q̂
)
+

(
ĥ
ω
, ĥ

)
−2
∣∣∣∣( q̂

ω
, ĥ
)∣∣∣∣

≥ (1−δ )

(
ĥ
ω
, ĥ

)
+

(
1− 1

δ

)(
q̂
ω
, q̂
)

≥ (1−δ )
[
∥ĥ∥2

Q1
+

1
θ
∥ĥ∥2

Q2

]
+

(
1− 1

δ

)
∥q̂∥2. (19)

Due to ĥ ∈ G, the following estimate is valid:

∥ĥ∥Q2 ≤ c3∥ĥ∥2
Q1
.
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Thus,
∥ĥ∥2

Ω = ∥ĥ∥2
Q1

+∥ĥ∥2
Q2

≤ (1+ c3)∥ĥ∥2
Q1
.

Therefore, we get the following inequality from (19):(
r̂
ω
, r̂
)
≥ c4(1−δ )∥ĥ∥2 +

(
1− 1

δ

)
∥q̂∥2, c4 = (1+ c3)

−1.

Using the last inequality, we will take (18) and obtain

∥ŷ∥2
B + τ2(1−2βλ χ2)∥yt∥2

B +2τ(1−βτλ )∥ŷ∥2
1

+βτ∥r̂∥2 +βτ2λ∥q̂∥2 +2τ(1−δ )c4∥ĥ∥2

+2τ
(
1− 1

δ
)
∥q̂∥2 ≤ ∥y∥2

B +βτ∥r∥2.

(20)

Let’s fix β > 0 and select τ > 0 so that for all θ > 1 the condition β > 0 were satisfied. Let’s select λ satisfying the
conditions

1−2βλ χ2 > 0, 1−βτλ > 0

and suppose δ = 4
4+βτλ < 1.

Then,

βτ2λ +2τ(1−1/δ ) = βτ2λ −2τ
βτλ

4
=

βτ2λ
2

, 1−δ =
βτλ

4+βτλ
.

Inequality (20) at such δ is the following(
1+

c5τ
χ2

)
∥ŷ∥2

B +βτ(1+ c6τ)∥r̂∥2 ≤ ∥y|2B +βτ∥r∥2, (21)

where c5 = τ(1− 2βλ χ2), c6 = min
{

λ
2 ,

2c4λ
4+βτλ

}
it is easy to see that constants β ,τ,χ2,λ can be selected the same

for all θ , 1 ≤ θ ≤ ∞. Thus, the following theorem is proved.

Theorem 1 For any β > 0, there is τ = τ(β ) independent upon ω ≥ 1 such that −χ1∆ ≤ B ≤−χ2∆ at τ ≤ τ constants
χ1,χ2 are independent upon ω .

In this case iteration process (9), (10) converges with geometric sequence rate, and convergence rate is independent
upon ω .

NUMERICAL CALCULATIONS

Test problem (1)-(2) is solved with the above described method. Subdomain Q2 was selected as a square Q2 =
{x1,k1 ≤ x1 ≤ x1,k2 ;x2,m1 ≤ x2 ≤ x2,m2}, where x1,k1 = 0.25, x1,k2 = 0.75, x2,m1 = 0.25, x2,m2 = 0.75. Domain Ω cover
subdomain Q2, Ω = {0 ≤ x1 ≤ 1;0 ≤ x2 ≤ 1}. Subdomain Q1 is determined as Q1 = Ω \Q2 the right part is given
in Q2 with the following way f (x1,x2) = 2(x2

2 − (x2,m1 + x2,m2)x2 + x2,m1 x2,m2)+2(x2
1 − (x1,k1 + x1,k2)x1 + x1,k1 x1,k2),

where x1,k1 = 0.25, x1,k2 = 0.75, x2,m1 = 0.25, x2,m2 = 0.75.
Function f (x1,x2) = 0 in subdomain Q1. Iteration parameter τ was selected τ = 10−3 ÷10−5, and parameter β was

determined so that it satisfies condition (7). And it is necessary to watch the parameter symbol ω in the subdomains
because −1 ≤ ω ≤ 1.

The set problem of elliptical type with strongly changing coefficients was solved by fictitious domain method
continued with leading coefficients. Figures 1-2 show the corresponding results of exact and approximate solution
having mesh points 101x101.

We used uniform mesh 101x101, 501x501, 1001x1001 for our calculations. The computing experiment on the small
mesh numerical experiment was done on the super computer URSA on the basis of 128 four-core processors Intel Xeon
series E5335 2.00GHz at Al Farabi KazNU. The developed method is based on building computational algorithm for
the elliptical equation with strongly changing coefficients. The developed algorithm uniformly converges at a certain
iteration quantity, and the results are accurate within 10−10. Numerical computation results are presented by graphics
editor Surfer.
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FIGURE 1. The diagram of exact solution having mesh points
101x101.

FIGURE 2. The diagram of approximate solution having mesh points
101x101.
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