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Abstract. In the paper we consider an inverse problem for the three-dimensional nonlinear 

pseudoparabolic equations describing the Kelvin-Voight motion. The inverse problem consists of 

finding a velocity field and pressure which is gradient and also a right-hand said of the equation. 

Additional condition about the solution to the inverse problem is given in the form of integral 

overdetermination condition. The existence and uniqueness of weak generalized solution of this 

inverse problem in the sobelev space is proved.  

Introduction  

The inverse problems for the partial differential equations arise in many areas of the science when 

attempts to describe the internal characteristics of the medium in which the flowing of physical and 

chemical processes by the results of observations of these processes in available areas for 

measurement. In last years the theory of the inverse problems for the different of non-classical 

equations of mathematical physics is actively developed in [1-5]. Inverse problems of determining 

the right-hand side of linear and nonlinear Navier-Stokes equation under a final also an integral 

overdetermination conditions were studied in papers [1-3]. The weak generalized solutions of the 

inverse problem for parabolic equations were considered in [4,5]. 

The solvability of initial boundary direct problems for equations describing the Kelvin-Voight 

motion and which are some modifications was investigated by A.P. Oskolkov [6-8]. He proved the 

unique existence of global weak and also the strong solutions of nonlinear initial-boundary value 

problems for linear viscoelastic Kelvin-Voight equations in threedimensional case. 

In this work we discuss the unique solvability of the inverse problem for the three-dimensional 

nonlinear equations of Kelvin-Voigt fluids [6-7], in the case when additional information on solving 

the direct problem is given in the integral form.  

By the successive approach method the existence and uniqueness of global in time weak 

generalized solution ( ) ( ) ( ) ( )TLJTLJTLf ,0;,0;,0, 21
2

1 ×







Ω∪








Ω∈ ∞

��
�

υ  of inverse problem is 

proved.  

Statement of the problem  

Let Ω  is a bounded domain in 3,2, =mR m  with smooth boundary .2C∈Ω∂  In the cylinder 

( )TQ
T

,0×Ω= , 0>T  with the lateral surface ( )T,0×Ω∂=Σ  we consider the following inverse 

problem consists of finding a set ( ) ( ) ( ){ }tftxptx ,,,, ∇υ
�

 of functions satisfying the system of 

equations:  

( ) ( ) ( ) ( ) Ttt Qtxtxgtfp ∈=∇+∆−∇+∆− ,       ,,
������

υχυυυνυ ,                                                        (1) 

 0=υ
�

div , ( )  , TQtx ∈ ,                                                                                                                  (2) 

the initial condition  

( ) ( ) Ω∈= xxx    ,0, 0υυ
��

,                                                                                                                 (3) 
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the boundary condition  

( ) ( ) Σ∈= x,t tx  ,0,υ
�

                                                                                                                      (4) 

and the integral overdetermination condition  

( ) ( ) ( ) ( )( ) ( ) [ ]∫
Ω

∈=∇∇+ Tttedxtxutxtxutx ,0     ,,,,,
����

υχυ ,                                                             (5) 

where ( ) ( )∑
=

∂
∂

=∇
m

i i

i txv
x

vvv

1

,,
���

, iv  are components of the vector-valued function ( )txv ,
�

. The 

functions ( )x0υ
�

, ( )tx,u
�

, ( )te , ( )x,tg
�

   and the positive constants χν ,  are given while { }fp,,∇υ
�

 is 

unknown.  

The global existence and uniqueness of the weak and also the strong solutions of the nonlinear 

initial-boundary direct problem (1)-(4) with the right-hand side ( ) ( ) ( ) ( )
T

QLtxgtftxf
21

,, ∈=
�

 was 

proved in [6]. We using results of [6-7] for the direct problem (1)-(4) and also the methodic of U.U. 

Abylkayrov in [4], we proof the theorem of existence and uniqueness of global in time weak 

generalized solution of the three dimensional nonlinear inverse problem (1)-(5).  

We used the notations of functional spaces and they are norms in [6]. 

Definition. A pair of functions ( )f,υ
�

 is called a generalized solution of the inverse problem (1)-

(5), if ( ) ( ) ( )Ω∈ 2,,, Ltxtx xυυ
��

 for all [ ]Tt .0∈  and ( ) ( )Tx QLtx 2, ∈υ
�

,  ( ) ( )TLtf ,02∈  and satisfied 

the following integral identities:  

{ } ( ) ( )( ) ( ) ( ) ( )∫∫ ∫∫∫ ++=−−+−
ΩT T

k

Q Q

xoxxtxxkxxt dxdttxtxgtfdxxxdxdt ,,0,0,0 ϕϕυχϕυϕυχϕυυϕυνϕυ
�����������

    (6) 

for any ( ) ( ) ( )TT QJQWtx ∩∈ 1,1
2,

�

ϕ , such that ( ) ( ) ( ) 0,,    ,
2

==∈ TxTxQL
xTxt
ϕϕϕ ,  

( ) ( ) ( ) ( )∫ ∫
Ω Ω

+++−=′ dxtxgutfdxuuuute
kxkxtxxxt ,

���������

υυυχυνυ                                                     (7) 

where 

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) [ ].,0for 0,, ,;,0,,,0  ,;,0 2
1
2

11 TtdxtxgtxuLTLtxgTWteJTСu ∈∀≠Ω∈∈Ω∈ ∫
Ω

∞
����

   (8) 

Lemma. The inverse problem (1)-(5) is equivalent to the statement of the problem (1)-(4), (7) for 

sufficiently smooth solution ( )f,υ
�

, and for the joint date of the problem.  

Remark. In the problem (1)-(6) under the condition (8) the function ( )tf  can be expressed 

explicitly, i.e. 

( ) ( ) ( ) ( )













+∇∇+∇∇−−′= ∫

Ω

−
Ω dxuuuutegutf

kxktt

��������

υυυχυνυ1

,2, .                                             (9) 

The main result of this work is the following proposition. 
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Theorem. If supposition (8) is valid and ( ) ( )Ω∩Ω∈ JW 1
20

�
�

υ , then exists unique weak 

generalized solution ( )f,υ
�

 of the inverse problem (1)-(5).  

Proof. To prove this theorem we can use the successive approximations method [4]. Take as zero 

approximation 00 =υ
�

 and define ( )mm f,υ
�

  through the relation:  

( ) ( ) ( ) ( )













−∇−∇+−′= ∫ ∫ ∫

Ω Ω

−−−−−
Ω dxudxuudxutegutf

kx
mm

k
m
xt

m
t

m ������� 11111

,2, υυυχνυ                    (10) 

{ } ( ) ( ) ( )∫∫∫∫∫ +∇+=−−+−
Ω TT

k

Q

m

Q

x
mm

kxt
m
x

m
x

m
xt

m dxdtgtfdxxdxdt ϕϕυχυϕυυϕυχϕυνϕυ
�������������

0,00    (11) 

for all ,...,2,1=m  and for any ( ) ( )TT QJQW ∩∈ 1,1
2

�
�

ϕ  such that ( ),2 Txt QL∈ϕ
�

 ( ) ( ) 0,, == TxTx xϕϕ
�

. 

Let us substitute ( ) ( )tf m  from (10) into (11), whence, by the theory of equations of motion of 

Kelvin-Voigt [6] it follows, that there is a unique weak solution of ( )T

m QJ
0  

∈υ
�

, which 

( )T
m
x

m QL2, ∈υυ
��

 for (1)-(4). Since the integral identity (11) represents a weak solution of direct 

problem for the equation of the Kelvin-Voigt with right side ( ) ( ) ( )tftхgtхF ,,
��

= . Under the 

assumption (8), we know that ( ) ( )
T

QLtхF
2

, ∈
�

 and consequently from [6] it follows that there is a 

unique weak generalized solution of the direct problem (11) for the equation of the motion of 

Kelvin-Voigt. 

Thus the sequence of pairs ( )mm f,υ
�

 is well defined. If we prove that the sequence ( )mm f,υ
�

 is a 

sequence of the Cauchy, then by the completeness of the space ( ) ( )TLQV
T

,0
22

×  follows, that a pair 

of functions ( )f,υ
�

 is the limit for the sequence ( ){ }mm f,υ
�

, i.e. ( ) ( )ff mm ,, υυ
��

→  as ∞→m . 

Therefore, ( )f,υ
�

 is the desired weak solution of the inverse problem of the (1)-(4), (7). 

Let us introduce the notations  

mmmU υυ
��

−= ++ 11  and mmm ffF −= ++ 11   

from (10), (11) we get the relations 

( ) ( )













+−−∇−∇= ∫ ∫∫

Ω Ω

−

Ω

−
Ω

+ dxuUUdxUuUuuguF
kx

mm
k

mm
k

m
t

m
xt

m ���������

)(, 11

,2
1 υυχν ,                     (12) 

( )[ ] ∫∫∫∫ +++++++ =+−−+−

T

k

Q

m
x

mm
k

mm
kxt

m
xx

m
xt

m dxdtgFdxdtUUUUU ϕϕυυϕχϕνϕ
�����������

1

Q

111111

T

        (13) 

with ( ) 00, =xU m
�

 initial conditions for  .....3,2,1=m and ( ) ( )TT QJQW ∩∈ 1,1
2

�
�

ϕ  such, that 

( ),2 Txt QL∈ϕ
�

 ( ) ( ) 0,, == TxTx xϕϕ
�

. 

We will estimate each term in the right-hand side of (12) by using Holder, Cauchy inequalities 

and ( ) ( ) ( )Ω∈Ω≤
ΩΩ

1
2,2,2

,
�

��

WxvvCv x  Poincare inequality [8] as follows. 
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( ) ( ) ( ) ≤













+−−∇∇−∇∇= ∫∫∫∫

Ω

−

ΩΩΩ

−
Ω

+ dxuUUdxuUdxuUudxUgutF
kx

mmmm
kt

m
t

mmm 11

,2
1 , υυχν

��

 

( ) ( ) ≤






 





 ++⋅+∇+∇∇

Ω

−

ΩΩΩ

−
Ω

,4

1

,4,4,4

1

,2, mmmm
kxt

m
t

m UUuuUuuUgu
k

υυχν
��

 

( ) ( )( ) ≤












∇⋅+Ω+∇+∇∇
Ω

−
Ω

4

3

4

1

4

3

4

1

,2

1

,2
27

64
, mmm

x
m

xtt
m UUuuCuuUgu υυχν

������

 

( ) ( )( ) ≤






 ∇⋅⋅+∇Ω+∇+∇−

Ω
mm

xx
m

tt UuUuCuugu
k
υχν
�����

27

64
,

1

,2  

( ) ( )
ΩΩ

−
Ω ∇≤∇







 ⋅∇+Ω+∇+∇

,2
1

,2

1

,2
27

64
, mmm

xtt UCUuuCuugu υχν
����

. 

After integrating it by τ  from 0 to t , we obtain the relation 

∫ ∇≤+

t

Q

mm

t

UCdF

0

2

,2
1

2
1 τ ,                                                                                                      (14) 

where ( ) ( )






 ⋅∇+Ω+∇+∇≡ −

Ω
m

xtt uuCuuguC υχν
�����

27

64
,

1

,21  is a positive constant which 

independent on mUm,  and mf .  

Further, from the relation (13) assuming therein 1+≡ mUϕ , we get the identity 

∫∫∫∫∫∫∫ ++++++

Ω

++ +⋅=∇+





 ∇+

tt

k

t Q

mm

Q

mm
x

m
k

Q

mmm dxdtUgFdxdtUUdxdtUdxUU 11111
2

1
2

1
2

1

2

1 ��

υνχ .   (15) 

Let estimate the right-hand side of the last identity by Cauchy and (14) inequalities  

( )

2

,2

12
2

0

2
1

2

1

0

2
1

,2

1

,0

11

2

1

2
max

TT

T

Q

m

t

m

t

m

Q

m

Tt
Q

mm UCdFdtFUgvraidxdtUgF ++++

∈

++ +≤












⋅≤ ∫∫∫∫ ε

τ
ε�

, 

( )
2

,2

1
3

0

2

,2

112

3

0

2

,4

11111

3

4

t

T

k Q

m

t

mm
x

t

mm
x

Q

mm
x

m
k UCdtUCdtUdxdtUU +

Ω

++

Ω

+++++ ∇≤∇⋅Ω






≤⋅≤ ∫∫∫∫ υυυ
���  

where ( ) ( )( ) ( )
( )( )Ω

+
Ω

∞∞
Ω≡≡

22 ;,0

1
3;,02

27

8
,,

LTL

m
xLTL

CCtxgС υ
�

 are positive constants. 

Consequently, from (15), we get the estimation 

≤++≤++ ∫∫∫∫ +++

Ω

+

Ω

++

t

m

t

m
x

t

m

t

m
x

m
x

m dFdU
C

dU
C

dUUU

0

2
1

0

2
13

0

2
1

2
2

0

2

,2

1
2

,2

1
2

1

2
τετχ

χ
τ

ε
τνχ  
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0

2
1

0

2
1

2
14 ∫∫ +++ +






 +

t

m

t

m
x

m dFdUU
C

τετχ
ε

                                                                         (16) 

From the last relation by the Gronwall lemma [8] we get the estimate 

[ ]
( )∫ +−+

Ω

++

∈
≤+






 +

t

m

Q

m
x

m
x

m

Tt
dFtCUUU

t

0

2
11

4

2

,2

1
2

,2

1
2

1

,0
expmax τεενχ

���

.                                              (17) 

Considering together the (14), (17), we note that the following inequalities are true  

( )
[ ]

( )

2

,0

1
4

1
1

2

,0

1

22

exp
tL

m

tL

m FtCСF −−+ ≤ εεν ,                                                                             (18) 

[ ]
( ) 2

,2

1
41

2

,2

1
2

,2

1
2

,2

1

,0
expmax

tt Q

m

Q

m
x

m
x

m

Tt
UtCCUUU
����

∇≤+





 + −+

Ω

+

Ω

+

∈
εενχ  

or  

( )
( )

( )tT QV

m

QV

m UtCCU
22

1
4

1
1

2
1 exp

��
−−+ ≤ εεν ,                                                                             (19) 

for any ,...2,1,0=m . 

By virtue of the arbitrariness of ε  and t , choosing the 
0
ε  and 

1
t  such that satisfied the inequality  

( ) 1exp 1
1

04
1

01 <≤−− qtCC ενε                                                                                                       (20) 

and from (18)-(19) follows the estimates  

( ) ( ) ( ) ( )
12121212

2

,2

1
2

1
2

,0

2

,0

1 ,
tt QV

mm

QV

m

tL

m

tL

m UqUUFqF
���

≤∇+≤
Ω

+++                                   (21) 

for any ,...,2,1=m  where ( ]
1

,0
1

tQ
t

×Ω= . 

Consequently, from the foregoing estimate (21) and convergence of the geometric progression it 

follows that ( ){ }mm f,υ
�

 is a Cauchy sequence in the functional space ( ) ( )
122

,0
1

tLQV
t
× . By virtue of 

the foregoing reasoning there is a unique pair of the functions ( ) ( ) ( )122 ,0,
1

tLQVf t ×∈υ
�

 with 

( )Ω∈ 2Lxυ
�

, for all ( ]
1

,0 tt∈ , such that 

υυ
��

→m  in ( )
12 tQV ,  x

m
x υυ

��

→  in ( )Ω2L  and ff m →  in ( )12 ,0 tL  as ∞→m .   (22) 

The passing to the limit as ∞→m  in relations of (10)-(11) due to the strong convergence of mυ
�

 

and mf , we obtain that the limit functions υ
�

 and f  are a weak generalized  solution of the inverse 

problem (1)-(5) in ( ]
1

,0
1

tQ
t

×Ω= . 

Now, let us prove the uniqueness of the solution of the inverse problem (1)-(5) in 
1t

Q . 

We assume to the contrary that there are two distinct solutions ( ) 2,1,, =kf kkυ
�

 in 
1t

Q . Then due 

to relation (21), we get the estimates 

( ) ( ) ( ) ( )
2

21

2

21

2

,021

2

,021
12121212

,
tt QVQVtLtL

qffqff υυυυ
����

−≤−−≤− ,                                       (23) 

where it known that the q<1. From the relation (23) it follows that 
21

ff =  and 
21
υυ
��

= . 
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So, we have proved that the existence and uniqueness of solutions ( )f,υ
�

 only in interval 

( ) Ttt <
11

,,0 . 

Next, we extend the proof of the theorem, i.e. give a proof in all ( )T,0 . 

We have a constants 
i

C,
0
ε  and 

1
t  which independent on initial given function ( )x

0
υ
�

. Therefore, 

if such t  are unexhausted all interval ( )T,0 , then repeating the reasoning for [ ]
21

, ttt∈ , where 
1

t  is 

such that ( ) ( )
10

, txx υυ
��

≡ , etc., in a finite number of steps we see that, the inverse problem (1)-(5) has 

a unique generalized solution in all [ ]TQ
T

,0×Ω= . Thereby, we complete proving theorem. 
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