23rd Europhysics Conference on Atomic and Molecular Physics of Ionized Gases

Proceedings

July 12-16, 2016 Bratislava, Slovakia

P03-05-05 Stefan Raggl	Using plasma diagnostics to correlate the manufacturing process of a Mo magnetron sputtering target to the PVD process parameters
P03-05-06 Arthur Salmon	Nitric oxide production rate of pulsed nanosecond and microsecond discharge in atmospheric pressure air
P03-05-07 Eugen Stamate	Plasma diagnostics during magnetron sputtering of aluminum doped zinc oxide
P03-05-08 Milan Tichy	Detection of TiO ₂ nanoparticles by the laser beam scattering
P03-05-09 Robert Tschiersch	Characterization of self-stabilized single barrier discharge filaments in plane-to-plane electrode configuration by correlated electrical, optical and surface charge diagnostics

6. Plasma and discharges: theory and simulation

GL6	Vasco Guerra	Modeling of N ₂ -O ₂ plasmas volume and surface kinetics
TL3	Paola Diomede	Modeling of tailored ion energy distributions for plasma processing applications
HT1	Andrew Gibson	The role of surface interaction probabilities in reactive plasma modelling
WI	Georgi Trenchev	3D model of a reverse-vortex flow gliding arc plasmatron
P01-06-01	Kostyantyn Korytchenko	Spark discharge detonation initiation models
P01-06-02	Sebastian Nemschokmichal	Simulation of laser photodetachment of negative ions in helium-oxygen barrier discharges and comparison to the experiment
P01-06-03	Haruaki Akashi	Secondary ionisation coefficient in atmospheric pressure oxygen dielectric barrier discharges
P01-06-04	Jan Čech	Residual heat contribution to the memory effect of DBD microdischarges: numerical and experimental study
P01-06-05	Aranka Derzsi	Experimental and simulation study of capacitively coupled oxygen discharges driven by tailored voltage waveforms
P01-06-06	Paola Diomede	Diffusion models for CO ₂ vibrational kinetics in low temperature plasma
P01-06-07	Nikolay Dyatko	Theoretical study of plasma parameters in a dc glow discharge and post-discharge in argon-nitrogen mixtures
P01-06-08	Jakub Hromadka	Computational study of mutual interaction of plasma sheaths in multicomponent plasma
P02-06-01	Laurent Garrigues	Negative ion extraction from the plasma electrode surface: analysis of the influence of parameters used in Particle-In-Cell simulations
P02-06-02	Constantinos Lazarou	Investigation of the influence of electron impact cross section from different databases on the simulation results of helium barrier discharge with dry air impurities
P02-06-04	Thomas Mussenbrock	Phase mixing and negative power absorption in inductive discharges
P02-06-05	Zeljka Nikitovic	Reduced mobility of He^+ in CF_4
P02-06-06	Jiting Ouyang	Comparison of Trichel pulse in negative corona and self-pulsing oscillation in hollow cathode discharge
P02-06-07	Marija Radmilovic- Radjenovic	Breakdown voltage in sulfur hexafluoride
P02-06-08	Belkacem Saghi	Modeling discharge process in the Xe- Cl_2 DBD using simplified plasma chemistry
P03-06-01	Adriana Annušova	Highly vibrationally excited O_2 molecules in low pressure oxygen plasmas: 2. Self-consistent model
P03-06-02	Kodanova Sandugash	Control of the state of charged dust particles via additional alternating external field
P03-06-03	Erik Shalenov	Dielectric function and reflectivity of dense xenon plasma
P03-06-04	Florian Sigeneger	Influence of the CO_2 dielectric barrier discharge conditions on the CO production
P03-06-05	Dmitry Tereshonok	Prebreakdown phenomena in bubble clusters

Dielectric Function and Reflectivity of Dense Xenon Plasma

E.O. Shalenov^{(*)1}, K.N. Dzhumagulova¹, T.S. Ramazanov¹, G. Röpke², H. Reinholz²

 ¹ IETP, Department of Physics, al-Farabi Kazakh National University, al-Farbi 71, 050040 Almaty, Kazakhstan
² Institute of Physics, University of Rostock, A.-Einstein-Str. 23-24, 18059 Rostock, Germany
^(*) shalenov.erik@mail.ru

In this work the dielectric function and reflectivity of dense xenon plasma were investigated on the basis of effective potentials taking into account the quantum-mechanical effect of diffraction and screening effects. The Drude-Lorentz and Fresnel formulas were applied to calculate the dielectric function and reflectivity.

The investigation of optical properties of the dense xenon plasma is important for the realization of different technological applications [1-4].

In this work we consider dense partially ionized xenon plasma consisting of the electrons, ions and atoms. Particles densities are in the range of $n = 10^{20} \div 10^{23} \text{ cm}^{-3}$ and the temperature range is from $2.5 \times 10^4 \text{ K}$ to $5 \times 10^4 \text{ K}$.

In work [5] the effective potential of electron-atom interaction, taking into account both quantummechanical effect of diffraction and screening effects, was presented. The way to take into account the dynamic screening was proposed in work [6], where the statical Debye radius was replaced by a dynamic one:

$$r_o = r_D (1 + \frac{\nu^2}{\nu_{Th}^2})^{\frac{1}{2}},\tag{1}$$

here v is the relative velocity of the colliding particles, v_{Th} is the thermal velocity of the particles in the system. Then the effective potential of electron-atom interaction with dynamic screening can be rewritten as [7]:

$$\Phi_{ea}^{dyn}(r) = -\frac{e^2 \alpha}{2r^4 (1 - 4\lambda_{ea}^2 / r_o^2)} \left(e^{-Br} (1 + Br) - e^{-Ar} (1 + Ar) \right)^2, \tag{2}$$

where
$$A^2 = \frac{1}{2\lambda_{ea}^2} \left(1 + \sqrt{1 - 4\lambda_{ea}^2 / r_o^2} \right), \ B^2 = \frac{1}{2\lambda_{ea}^2} \left(1 - \sqrt{1 - 4\lambda_{ea}^2 / r_o^2} \right)$$

In the framework of these pseudopotential models for the particle interactions, the scattering phase shifts were calculated on the basis of the Calogero equation [8].

Phase shifts enable us to calculate the transport scattering cross section $Q_{ea}^{T}(k)$. The collision frequency of electrons with atoms v_{ea} can then be obtained by the following expression:

$$v_{ea} = 4\sqrt{\frac{2}{\pi}} n_a \sqrt{\frac{k_B T}{\mu_{ea}}} \int_0^\infty Q_{ea}^T(g) g^3 Exp(-g^2) dg .$$
(3)

here $\mu_{ea} = m_e m_a / m_e + m_a$ is the reduced mass of the electron-atom pair, g is dimensionless reduced velocity. The results will be compared with earlier results which were based on experiments for the transport cross section [9].