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An inverse coefficient problem of heat conductivity with a
nonlocal Samarskii-Ionkin type condition

Gulaym Oralsyn and Makhmud A. Sadybekov

Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan

Abstract. We consider the problem of modeling the process of determining the distribution function of temperature and time
varying structure of homogeneous bar of a given law changes in the average temperature. So there is an inverse problem for the
heat equation in which together with finding the solution of the equation it is required to find unknown coefficient depending
only on the time variable. The specific features of the considered problems is that the system of eigenfunctions of the multiple
differentiation operator subject to boundary conditions of the initial problem does not have the basis property. In this paper, it
is proved that this inverse problem has a unique generalized solution.
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INTRODUCTION

Problems of determining coefficients or the right-hand side of a differential equation simultaneously with its solution
are called inverse problems of the mathematical physics. In this paper we consider one family of problems modeling
the process of determining the function of temperature distribution and time varying structure of a homogeneous bar
by a given law of changing of medium temperature. In the process of mathematical modeling there arises an inverse
problem for a heat equation where alongside with a solution of the problem it is required to find unknown coefficient
depending only on a time variable.

The solvability of various inverse problems for parabolic equations was studied in papers of Anikonov Yu.E. and
Belov Yu.Ya., Bubnov B.A., Prilepko A.I. and Kostin A.B., Monakhov V.N., Kozhanov A.I., Sabitov K.B. and many
others. We note [1-11] from recent papers close to the theme of our article.

Unlike the preceding works, we study the inverse problem for a heat equation subject to boundary conditions with
respect to a spatial variable under which the system of eigenfunctions of the corresponding spectral problem for an
ordinary differential operator does not form a basis.

Paper [12] is most close to the subject of this one. In this paper the existence of the classical solution of an inverse
problem analogous to our investigated problem was justified. However, due to the fact that boundary conditions in [12]
are regular, but not strengthened regular, the improvement of the smoothness and satisfaction of additional conditions
have been required from the input data of the problem. In the present paper these conditions are completely removed
and it is shown that an inverse problem has a unique generalized solution.

STATEMENT OF THE PROBLEM

In the domain Ω = {(x, t) : 0 < x < 1,0 < t < T} consider a problem on finding unknown coefficient p(t) of the heat
equation

ut = uxx(x, t)− p(t)u(x, t)+ f (x, t) (1)

subject to the initial condition
u(x,0) = φ(x), 0 ≤ x ≤ 1, (2)

the nonlocal boundary conditions

ux(0, t) = ux(1, t)+αu(1, t), u(0, t) = 0, 0 ≤ t ≤ T, (3)
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and the overdetermination conditions ∫ 1

0
u(x, t)dx = E(t), E(t) ̸= 0,0 ≤ t ≤ T, (4)

where E(t) ∈W 1
2 (0,T ). Here the parameter α is any positive number, and f (x),φ(x) and E(t) are given functions. At

α = 0 boundary conditions (3) are well- known and called in literature as Samarskii-Ionkin conditions.
Direct problem (1)-(3) in case when p(t)≡ 0 was investigated in [20].
The most close to the theme of the present paper is [12]. The existence of classical solution of an inverse problem

analogous to our investigated problem has been justified in this paper. However, due to the fact that boundary conditions
in [12] are regular, but not strengthened regular, from the input data of the problem there have been required the
improvement of the smoothness and satisfaction to additional conditions:

(A1) φ ∈C2[0,1];φ ′(0)−αφ(0) = 0, φ(0) = φ(1);

φ0 > 0,φ2n−1 ≥ 0, n = 1,2,3.... , if α < 0;

φ1 < 0,φ2n−1 ≤ 0, n = 2,3.... , if α > 0.

(A2) E(t) ∈C1[0,T ]; E(0) =
∫ 1

0
φ(x)dx; E(t)> 0, ∀t ∈ [0,1];

(A3) f (x, t) ∈C2[D̄T ]; f (x, t) ∈C2[0,1], ∀t ∈ [0,1];

fx(1, t)−α f (0, t) = 0, f (0, t) = f (1, t);

f0(τ)> 0, f2n−1(τ)≥ 0, n = 1,2,3.... , if α < 0;

f2n−1(τ)≤ 0, n = 2,3.... , if α > 0.

In the present paper, these conditions are completely removed and it is shown that the inverse problem has a unique
generalized solution.

For solution of the problem it is necessary to use the apparatus of nonlocal non-selfadjoint differential operators
and results on basis properties of its root vectors, developed in papers of T.Sh. Kal’menov, M.A. Sadybekov, A.M.
Sarsenbi, N.S. Imanbaev, D. Suragan [13]-[19].

AUXILIARY SYSTEM

By the solution of the problem we will call a pair of functions {u(x, t), p(t)} that turn equation (1) and the condition
(2)-(4) into identity in a corresponding class of functions u(x, t) and p(t).

Using of the Fourier method for the solution of problem (1)-(3) leads to a spectral problem for the operator l given
by the differential expression and the boundary conditions

l(y)≡−y′′(x) = λy(x), 0 < x < 1, y′(0) = y′(1)+αy(1), y(0) = 0. (5)

The boundary conditions in (5) are regular but not strengthened regular [10]. Eigenfunctions of the operator l has
the form

y(1)k (x) = sin(2πkx), k = 1,2, ...., y(2)k (x) = sin(2πβx) k = 0,1,2, ....

This system is almost normalized but does not form even a unconditional basis in L2(0,1).
However, as shown in [20], the auxiliary system

y0(x) = y(2)0 (x)(2β0)
−1, y2k(x) = y(1)k (x),

y2k−1(x) = (y(2)k (x)− y(1)k (x))(2δk)
−1, k = 1,2, ...
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constructed from the mentioned above, forms a Riesz basis in L2(0,1). If the function u satisfies boundary conditions
(5), then its Fourier series according to the system {yk(x)} converges in sense of the space W 2

2 (0,1), in particular,
uniformly. This fact allows to use the method of separation of variables for the solution of an initial-boundary value
problem with boundary condition (3).

It is easy to calculate that

y
′′
0(x) = −λ (2)

0 y0(x), y
′′
2k(x) =−λ (1)

k y2k(x),

y
′′
2k−1(x) = −λ (2)

k y2k−1(x)−
λ (2)

k −λ (1)
k

2δk
y2k(x). (6)

SOLUTION OF THE DIRECT PROBLEM

Consequently any solution and the input data of problem (1)-(3) can be represented in the form of the biorthogonal
series

u(x, t) =
∞

∑
k=0

uk(t)yk(x), f (x, t) =
∞

∑
k=0

fk(t)yk(x), φ(x) =
∞

∑
k=0

φkyk(x), (7)

where uk(t) = (u(x, t),νk(x)), fk = ( f (x),νk(x)) and φk = (φ(x),νk(x)).
In the paper, we justify that the solution of the direct problem exists, is unique and may formally be written in

the form of biorthogonal expansion (7). For the research completion of the direct problem (analogous to the Fourier
method) we justify the smoothness of the obtained formal solution and the convergence of all encountered series.

Let ∥u∥0 be a norm of the space L2(Ω). By W 2,1
2 (Ω) denote the space of the function u(x, t), for which almost

everywhere there exist the generalized derivatives uxx(x, t), ut(x, t) belonging to L2(Ω) with the norm

∥u(x, t)∥2
2,1 = ∥u(x, t)∥2

0 +∥uxx(x, t)∥2
0 +∥ut(x, t)∥2

0.

Under the generalized solution of problem (1)-(3) we mean a function u(x, t) ∈ W 2,1
2 (Ω), that turn the problem into

identity.
For the direct problem (1)-(3) the following theorem takes place.

Theorem 1. Let f (x, t) ∈ L2(Ω) and p(t) ∈ L2(0,T ). If function φ(x) belongs to W 2
2 (0,1) and satisfies boundary

conditions (5), then there exists a unique generalized solution u(x, t) ∈W 2,1
2 (Ω) of problem (1)-(3).

SOLUTION OF THE INVERSE PROBLEM

The main result of the paper is theorem on the existence and uniqueness of a generalized solution of problem (1)-(4).

Theorem 2. If functions φ and f belong to classes φ ∈ W 2
2 (0,1), f ∈ L2(Ω), E(t) ̸= 0 and E(t) ∈ W 1

2 (0,T ), then a
unique generalized solution u(x, t) ∈W 2,1

2 (Ω), p(t) ∈ L2(0,1) of problem (1)-(4) exists.

Proof. We substitute the solution of direct problem (1)-(3) in the form of biorthogonal expansion

u(x, t) = u0(t)y0(x)+
∞

∑
k=1

(
u2k(t)y2k(x)+u2k−1(t)y2k−1(x)

)
(8)

into the overdetermination conditions (4). We get under all 0 ≤ t ≤ T

E(t) = u0(t)
∫ 1

0
y0(x)dx+

∞

∑
k=1

(
u2k(t)

∫ 1

0
y2k(x)dx+u2k−1(t)

∫ 1

0
y2k−1(x)dx

)
.

Separately calculate integrals from basis functions∫ 1

0
y2k(x)dx =

∫ 1

0
sin2πxdx = 0, k = 0,1,2, ...,∫ 1

0
y0(x)dx = (2β0)

−1
∫ 1

0
y(2)0 (x)dx = (2β0)

−1
∫ 1

0
sin2β0xdx =

1− cos2β0

(2β0)2 .
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Since tanβk =
α

2βk
, then

1− cos2βk = 2
tan2 βk

1+ tan2 βk
=

2α2

(2βk)2 +α2 ,k = 1,2, .... (9)

Therefore ∫ 1

0
y0(x)dx =

2α2

(2β0)2(2βk)2 +α2)
.

Analogically calculate ∫ 1

0
y2k−1(x)dx = (2δk)

−1
∫ 1

0

(
y(2)k (x)− y(1)k (x)

)
dx

= (2δk)
−1

∫ 1

0

(
sin(2βkx)− sin(2πkx)

)
dx

= (2δk)
−1 1− cos2βk

(2βk)2 =
2α2

δ (2βk)2(2βk)2 +α2)
.

For convenience we introduce notations q(t) = exp{
∫ t

0 p(s)ds}.
It is easy to see that

p(t) =
q
′
(t)

q(t)
. (10)

Finally we have

E(t) =
(

φ0e−λ (2)
0 t−

∫ t
0 p(s)ds +

∫ t

0
f0(τ)e−λ (2)

0 (t−τ)−
∫ t

τ p(s)dsdτ
) 2α2

(2β0)2((2βk)2 +α2)

+
2α2

δ (2βk)2(2βk)2 +α2)

∞

∑
k=1

(
φ2k−1e−λ (2)

k t−
∫ t

0 p(s)ds +
∫ t

0
f2k−1(τ)e−λ (2)

k (t−τ)−
∫ t

τ p(s)dsdτ
)

=
α2

q(t)

 2e−λ (2)
0 t

(2β0)2[(2βk)2 +α2]
φ0 +

∞

∑
k=1

e−λ (2)
k t

δk(2βk)2((2βk)2 +α2)
φ2k−1


+α2

∫ t

0

q(τ)
q(t)

 2 f0e−λ (2)
0 (t−τ)

(2β0)2[(2βk)2 +α2]
+

∞

∑
k=1

e−λ (2)
k (t−τ)

δk(2βk)2((2βk)2 +α2)
f2k−1(τ)

dτ.

If we introduce new notations

F(t) =
α2

E(t)

 2e−λ (2)
0 t

(2β0)2[(2βk)2 +α2]
φ0 +

∞

∑
k=1

e−λ (2)
k t

δk(2βk)2((2βk)2 +α2)
φ2k−1

 ,

K(t,τ) =
α2

E(t)

 2 f0e−λ (2)
0 (t−τ)

(2β0)2[(2βk)2 +α2]
+

∞

∑
k=1

e−λ (2)
k (t−τ)

δk(2βk)2((2βk)2 +α2)
f2k−1(τ)

 ,

then for q(t) we have the integral equation

q(t)−
∫ t

0
K(t,τ)q(τ)dτ = F(t). (11)

This equation is an integral equation of Volterra type of the second kind. It is well-known that equation (10) has a
unique solution q(t) in L2(0,T ).

Since E(t) ̸= 0 and E(t)∈W 1
2 (0,T ), we have q∈W 1

2 (0,T ) from (10). Substituting q(t) into (9), we find the unknown
coefficient of the diffusion p ∈ L2(0,T ). The theorem is proved.
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CONCLUSION

In this work, we considered one family of problems of modeling the process of determining the distribution function
of temperature and time varying structure of homogeneous bar of a given law changes in the average temperature. So
there is an inverse problem for the heat equation in which together with finding the solution of the equation required
to find unknown coefficient depending only on the time variable. The specific features of the considered problems is
that the system of eigenfunctions of the multiple differentiation operator subject to boundary conditions of the initial
problem does not have the basis property. We proved the unique existence of a generalized solution to the mentioned
problem.
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