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Abstract. In this article we construct finite-difference scheme for three-dimensional equations of the atmospheric boundary
layer. The solvability of the mathematical model is proved and quality properties of solutions are studied. A priori estimates
are derived for the solution of differential equations. The mathematical questions of difference schemes for equations of the
atmospheric boundary layer are studied. Nonlinear terms are approximated in such a way that this integral term of the identity
vanishes when it is scalar multiplied. This property of the difference scheme is formulated as a lemma. The main a priori
estimates for the solution of the difference problem are derived. Approximation properties are investigated and the theorem
of convergence of the difference solution to the solution of the difference problem to the solution of the differential problem
is proved.
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INTRODUCTION

Mathematical models of computational fluid dynamics serves as the basis for the study of various natural phenomena,
technological processes and environmental problems. In this regard, the development and study of efficient and stable
numerical algorithms for solving the system of equations of the atmospheric boundary layer and their practical
implementation is relevant. There are various methods for the numerical solution of differential equations, new
techniques are has been developing, the work on their improvement has been continuously performed, reassessing the
methods is carried out. Basic methods for solving grid equations are systematized and described in detail in [1]. When
solving the Navier-Stokes equations, explicit schemes are inefficient due to hard restrictions on the ratio of temporal
and spatial steps of the computational grid, especially on finding stationary solutions to establish. Therefore, the most
frequently used implicit differencing scheme, unconditionally stable or have weaker constraints on the stability. An
overview of the most commonly used numerical algorithms presented e.g. in papers [2–8].

In [9] a new symmetric method of approximation of the non-stationary Navier-Stokes system of equations of the
Cauchy-Kovalevskaya type is proposed. The properties of the modified problem are studied. The convergence of the
solution of modified problem to the solution of the original problem is proved on the infinite time interval when
ε . In [10] the convergence of finite-difference scheme, approximating the primitive equations with the second order
in the spatial variables, to the solution of the differential problem under the natural assumption of smoothness of
the solution of the original problem. The reference [11] studies difference schemes by time, the accuracy order of
which can be arbitrarily high. Difference schemes by time for solving the Navier-Stokes equations are presented. The
impact of the scheme order on the calculations accuracy is examined. In [12–14] numerical algorithms for solving the
Navier-Stokes equations using the finite element method are proposed. The analysis of stability and convergence of
the proposed methods is conducted.



PROBLEM SETTING

Consider the three-dimensional equations of the atmospheric boundary layer in a domain Ω = {0 < xi < li, i = 1, 2, 3}
with a border S:
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where t – is time, x1, x2, x3 – are Cartesian coordinates, ~V - the wind velocity vector with components u, υ ,
ω, p – is pressure, De – is a dimensionless characteristic deviations of the wind from geostrophic, ReT – is a
the number of dimensionless turbulent exchange, λ – is the dimensionless parameter of convection, ax1 , ax2 – are
horizontal coefficients of atmospheric turbulence, the amount of movement, ax3 – is a atmospheric vertical coefficient
of turbulent exchange for momentum. The system of equations (1)-(4) is complemented by the following initial-
boundary conditions:

~V (x,0) =~V 0(x), x ∈Ω; ~V (x, t) = 0, x ∈ S. (5)

In Ω the function ~V 0(x) is set as follows: div~V 0(x) = 0 For the numerical solution of the equations of the atmospheric
boundary layer (1) -(4), a grid with distributed velocities are used. In the domain Ω we build the grids ΩH , ΩH =
Ωh
⋃

Ωx
⋃

Ωy
⋃

Ωz, where
Ωh = {(x1i,x2 j,x3k), x1i = ih1, x2 j = jh2, x3k = kh3,

i = 0,1, . . . ,N1; j = 0,1, . . . ,N2; k = 0,1, . . . ,N3, h1 = l1/N1, h2 = l2/N2, h3 = l3/N3}

Ωx = {(x1i+1/2,x2 j,x3k),x1i+1/2 = (i+1/2)h1,x2 j = jh2, x3k = kh3, (6)

i = 0,1, . . . ,N1−1; j = 0,1, . . . ,N2; k = 0,1, . . . ,N3, h1 = l1/N1, h2 = l2/N2, h3 = l3/N3}

Ωy = {(x1i,x2 j+1/2,x3k), x1i = ih1, x2 j+1/2 = ( j+1/2)h2, x3k = kh3
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Ωz = {(x1i,x2 j,x3k+1/2), x1i = ih1, x2 j = jh2,x3k+1/2 = (k+1/2)h3,

i = 0,1, . . . ,N1; j = 0,1, . . . ,N2; k = 0,1, . . . ,N3−1, h1 = l1/N1, h2 = l2/N2, h3 = l3/N3}.

Thus, the following difference scheme is constructed:
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The continuity equation in a difference form is written as follows:
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The following initial-boundary conditions are satisfied:
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Lemma. For any grid functions ui+1/2 j,k ∈ Ωx, υi, j+1/2,k ∈ Ωy, ωi, j,k+1/2 ∈ Ωz, satisfying conditions (10), (11), the
following identities hold
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where the summation is performed on the internal nodes of the mesh Ωx
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Ωz. We define the norm of the velocity
vector as follows:
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Let us evaluate the quantities appearing in equation (14). Considering the conditions (11), one can make sure that
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Using Young’s inequality and the boundedness of the coefficient a(x1i,x2 j,x3k) from below, we have
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where
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We add non-negative summands
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To study the convergence of the solution of finite-difference problem to the solution of the differential problem, we
consider the finite-difference equations for equations of the atmospheric boundary layer

un
t,h,i+1/2 j,k +L(1)

1h un
x1,h,i+1/2, j,k +Pn+1

x1,h,i, j,k
= 1

De υn
h,i, j+1/2,k+

+ 1
ReT

[
(ai, j,kun

x1,h,i+1/2 j,k)x1 +(ai+1/2 j+1/2,kun
x2,h,i+1/2 j,k)x2 +(ai+1/2, j,k+1/2un

x3,h,i+1/2,k)x3

]
+ f 0

i+1/2 j,k,

i = 1,N1−2, j = 1,N2−1, k = 1,N3−1

(28)

υt,h,i, j+1/2,k +L(2)
1h υn

i, j+1/2,k +Pn+1
x2,h,i, j,k

=− 1
De un

h,i+1/2, j,k+

+ 1
ReT

[
(ai+1/2, j+1/2,kυn

x1,h,i+1/2, j+1/2,k)x1 +(ai, j+1,kυn
x2,h,i, j,k

)x2 +(ai, j+1/2,k+1/2υn
x3,h,i, j+1/2,k+1/2)x3

]
+ f 0

i, j+1/2,k,

i = 1,N1−2, j = 1,N2−1, k = 1,N3−1
(29)

ωn
t,h,i, j,k+1/2 +L(3)

1h ωn
h,i, j,k+1/2 +Pn+1

x3,h,i, j,k
= λ+

+ 1
ReT

[
(ai+1/2, j,k+1/2ωn

x1,h,i+1/2, j,k+1/2)x1 +(ai, j+1/2,kωn
x2,h,i, j+1/2,k)x2 +(ai, j,k+1ωn

x3,h,i, j,k
)x3

]
+ f 0

i, j,k+1/2,

i = 1,N1−2, j = 1,N2−1, k = 1,N3−1

(30)

un+1
x1,h,i+1/2 j,k +υ

n+1
x2,h,i, j+1/2,k +ω

n+1
x3,h,i, j,k+1/2 = 0. (31)

with the following initial-boundary conditions:
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We define the error of the solutions of differential problem (1)-(5) and the difference scheme (28)-(32) as follows:
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i, j+1/2,k,

φ
(3)n
t +L(3)

1h φ
(2)n +π

n
i, j,k = λ + (36)

+
1

ReT

[
(ai+1/2, j,k+1/2φ

(3)
x1,i+1/2, j,k+1/2)x1 +(ai, j+1/2,kφ

(3)n
x2,i, j+1/2,k)x2 +(ai, j,k+1φ

(3)n
x3,i, j,k

)x3

]
+A(3)

i, j,k+1/2 +ψ
(3)
i, j,k+1/2,

φ
(1)(n+1)
x1,i+1/2 j,k +φ

(2)(n+1)
x2,i, j+1/2,k +φ

(3)(n+1)
x3,i, j,k+1/2 = 0. (37)



where the error of approximation of difference scheme (28)-(32)on the exact solution of the differential problem (1)-(5)
is defined as

ψ
(1)
i+1/2 j,k =

1
De

υ
n
i, j+1/2,k +

1
ReT

[
(ai, j,kun

x1,i+1/2 j,k)x1 +(ai+1/2 j+1/2,kun
x2,i+1/2 j,k)x2 +(ai+1/2, j,k+1/2un

x3,i+1/2 j,k)x3

]
−un

t,i+1/2 j,k−L(1)
1h un−Pn

x1,i, j,k (38)

ψ
(2)
i, j+1/2,k =−

1
De

un
i+1/2 j,k+

1
ReT

[
(ai+1/2, j+1/2,kυ

n
x1,i+1/2, j+1/2,k)x1 +(ai, j+1,kυ

n
x2,i, j,k)x2 +(ai, j+1/2,k+1/2υ

n
x3,i, j+1/2,k+1/2)x3

]
−υ

n
t,i, j+1/2,k−L(2)

1h υ
n−Pn

x2,i, j,k (39)

ψ
(3)
i, j,k+1/2 = λ +

1
ReT

[
(ai+1/2, j,k+1/2ω

n
x1,i+1/2, j,k+1/2)x1 +(ai, j+1/2,kω

n
x2,i, j+1/2,k)x2 +(ai, j,k+1ω

n
x3,i, j,k)x3

]
−ω

n
t,i, j,k+1/2−L(3)

1h ω
n−Pn

x3,i, j,k (40)

and has the second order of approximation by h and the first order by τ [16]. The initial-boundary conditions for the
problem of error (34)-(37) are defined as follows

φ
(1)0
i+1/2 j,k = 0, φ

(2)0
i, j+1/2,k = 0, φ

(3)0
i, j,k+1/2 = 0

φ
(2)n+1
0, j+1/2,k = φ

(2)n+1
N1, j+1/2,k = φ

(1)n+1
1/2 j,k = φ

(1)n+1
N1−1/2, j,k = φ

(3)n+1
0, j,k+1/2 = φ

(3)n+1
N1, j,k+1/2 = 0, j = 0,N2−1, k = 0,N3−1

φ
(2)n+1
i,1/2,k = φ

(2)n+1
N1, j−1/2,k = φ

(1)n+1
i+1/2,0,k = φ

(1)n+1
i+1/2,N2,k

= φ
(3)n+1
i,0,k+1/2 = φ

(3)n+1
i,N2,k+1/2 = 0, i = 0,N1−1, k = 0,N3−1

φ
(2)n+1
i, j+1/2,0 = φ

(2)n+1
i, j+1/2,N3

= φ
(1)n+1
i+1/2, j,0 = φ

(1)n+1
i+1/2, j,N3

= φ
(3)n+1
i, j,1/2 = φ

(3)n+1
i, j,N3−1/2 = 0, i = 0,N1−1, j = 0,N2−1

(41)

Multiplying the differential equation (34)-(37) by 2τφ
(1)(n+1)
i+1/2 j,k h1h2h3, 2τφ

(2)(n+1)
i, j+1/2,kh1h2h3, 2τφ

(3)(n+1)
i, j,k+1/2h1h2h3, respec-

tively, then summing by grid domains Ωx, Ωy, Ωz, we obtain

‖~φ n+1‖2−
(
1+ 5τ

2 C4− 2τ

De

)
‖~φ n‖2 +(1−2τC4)‖∇h~φ

n+1‖2 +
(

1− 24τC1
h2 − 2

τ
− 2τ

De

)
‖~φ n+1−~φ n‖2+

+2τ(C1−C3‖~φ n‖‖∇h~φ
n‖)‖∇h~φ

n‖2 ≤ 2τ‖~ψn‖‖~φ n+1‖.
(42)

Let us denote a = 1; b = 1+ 5τ

2 C4− 2τ

De and rewrite (42) as follows:

a‖~φ n+1‖2−b‖~φ n‖2 +
(

1− 24τC1
h2 − 2

τ
− 2τ

De

)
‖~φ n+1−~φ n‖2 +(1−2τC4)‖∇h~φ

n+1‖2+

+2τ(C1−C3‖~φ n‖‖∇h~φ
n‖)‖∇h~φ

n‖2 ≤ 2τ‖~ψn‖‖~φ n+1‖
(43)

Let a≥ b. Then is follows that
2

De
− 5

2
C4 ≥ 0. (44)

Let
C1−C3‖~φ n‖‖∇h~φ

n‖ ≥ 0; 1− 24τC1

h2 − 2
τ
− 2τ

De
> 0; 1−2τC4 > 0. (45)

Then, considering that the third and fifth terms in the left-hand side of (43) are nonnegative, we obtain

a(‖~φ n+1‖2−‖~φ n‖2)+C5‖∇h~φ
n+1‖2 ≤ 2τ‖~ψn‖ ‖~φ n+1‖ (46)

where C5 = 1−2τC4. Considering that a = 1, we have

‖~φ n+1‖2−‖~φ n‖2 +C5‖∇h~φ
n+1‖2 ≤ 2τ‖~ψn‖ ‖~φ n+1‖.

Considering similarly as for problem (1)-(5), we obtain the following estimation for the problem (34)-(37), (41):

‖~φ n+1‖2 +C5

n

∑
k=0
‖∇h~φ

n+1‖2 ≤ 5τ
2

(
n

∑
k=0
‖~ψk‖

)2

, (47)



Further, given according to (38), that ‖~ψn‖= O(h2), we finally have

‖~φ n+1‖2 +C5

n

∑
k=0
‖∇h~φ

n+1‖2 ≤C6(τ
2 +h4). (48)

which proves the convergence of the solution of the difference problem (28)-(32) to the solution of the differential
problem (1)-(5). Theorem. Let the conditions (45). Then the solution of the difference scheme (28)-(32) is stable and
converges to the solution of the differential problem (1)-(5) with the speed determined by the inequality(48).
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