

ТЕЗИСТЕР ABSTRACTS

Халықаралық көнференция "Ғылымдағы, техникадағы және білім берудегі есептеулер мен ақпараттар технологиясы" International Conference "Computational and Informational Technologies in Science, Engineering and Education"

(intel)

CITech2015

24-27 кыркүлөк 2015 September 24-27 2015 Алматы, Қазақстан Almaty, Kazakhstan

V.A. Bereznev, An effective method for solving quadratic programming	
problems	116
A. Bibossinov, A. Iskakbayev, S. Aleksandrov, Mathematical modeling	of
influence of material microstructure to products formation processes	117
I.R. Bismildin, Y.S. Temirbekov, On the account of distributed inertia	of
rod mechanism in plane and spatial motion	118
N.A. Bokayev, On some properties of signals with finite Fourier-Walsh	1
spectrum	119
I.V. Bychkov, G.A. Oparin, A.G. Feoktistov, V.G. Bogdanova, A.A.	
Pashinin. The simulation modeling technology of warehouse logistics	
processes in distributed computing environment	120
A. Chanda, A study of isotropic turbulence with the help of vorticity	121
G.M. Dairbayeva, An Inverse Problem for the Stokes Equations	122
S. Dairbayeva, B. Belgibayev, A. Dairbayev, A. Bukesova, Clarified proc	ess
modeling of mudflow mass	123
M.I. Epov, E.P. Shurina, E.I. Mikhaylova, A.Y. Kutischeva, The	
modifications of the multiscale finite element method for solving	
electromagnetic problems on the AC and DC	124
M. Epov, E. Shurina, E. Shtabel, N. Shtabel, The modeling of	
electromagnetic field for different types of source signals	125
N. Glazyrina, B. Mukanova, Mathematical modeling of technological proc	285
of preparation of water for thermal power plants	126
A.G. Gorobchuk, Numerical model of plasma-chemical etching of silicon	in
CF_4/H_2 plasma	127
V.V. Gubarev, M.S. Khairetdinov, G.M. Voskoboynikova, G.F. Sedukhir	ia,
Informative Factors of Geophysical Fields Interaction in Problem of the	
Environmental Protection Prediction	128
A.G. Ibrayev, A.N. Tyurekhojayev, Bending vibration of drill string	129
A. Issakhov, Numerical study of the discharged heat water effect on the	
aquatic environment from thermal power plant	130
A. Issakhov, Ye. Khan, Mathematical modelling of detached flow around	a
car body by using Large eddy simulation method	131
A. Issakhov, B. Roidl, M. Meinke, Simulation of a transonic airfoil flou	
using a zonal RANS-LES Method	133

.

à

286

Mathematical modeling of technological processes

show that, using constraints-equality, you can exclude m variables, then the task will be reduced to the problem of the form (1).

In conclusion, these are the main tasks of auxiliary procedures in the method of sequential quadratic programming when solving General convex programming problem assuming sufficient smoothness determine its functions.

REFERENCES

 Bereznev V.A. A polynomial algorithm for the quadratic programming problem, Russian J. of Numerical Analysis and Math. Modelling, 29, 139-144 (2014).

▶ A. Bibossinov - Al-Farabi Kazakh National University, Almaty, Kazakhstan, email: bibossinov@gmail.com, A. Iskakbayev - Al-Farabi Kazakh National University, Almaty, Kazakhstan and S. Aleksandrov - Institute for problems in mechanics of RAS, Moscow, Russia

Mathematical modeling of influence of material microstructure to products formation processes

In the development of technological processes of manufacturing and design elements with the specified functional properties of the material necessary to ensure the appropriate structure, which determines its mechanical and physical properties. In the structural mechanics of fundamental role is simulation of the interaction of various scales in the process of deformation and failure to improve the operational properties of product (durability, strength, fracture toughness). [1]

Influence of microdefects to the physical and mechanical properties of the material is studied by Irwin theory of strength, in which the defect is modeled by mathematical cut with ability to spread. In this case, there are singular points at the ends of the cut where stress tends to infinity by the asymptotic law. In Griffith's fracture mechanics study of the influence of defects on the properties of materials comes to a boundary value problem in plane deformation of a body having elliptical shape cutout.

In this paper, by using the structural strength criterion of Neuber - Novozhilov [2], obtained a formula for critical load for plane blunt and sharp cracks. By this formula we made models of sharp crack as a thin ellipse with a ratio of small and major semi axes one to ten. With OpenFOAM software, based on the finite volume methods, by creating a solver for small elastoplastic deformation, we found the shape and size of plastic zone around cracks. As a calculation results A size of plastic zone satisfactorily agrees with the experimental researches of Hahn and Rosenfield [3], and shape with Tuba [3]. The results allow evaluating the impact of the microstructure to ductile material and on the behavior of structures made from such materials.

Most researches in metal processing are performed numerically, while the accuracy of the prediction depends on parameters of numerical schemes, which are not relevant to the mechanical process itself. Thus, it is necessary to build the

117