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Abstract. In this paper, we consider boundary value problems with perturbations operator for a degenerate first order
hyperbolic equation in the characteristic triangle with Cauchy conditions on the curve of degeneracy. The unique solvability
of the boundary value problems with operator perturbations is proved.
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INTRODUCTION

Nonlocal boundary value problems of various kinds for partial differential equations are of great current interest in
several fields of application. In a typical nonlocal problem, the partial differential equation (resp. boundary conditions)
for an unknown function u at any point in a domain Ω involves not only the local behavior of u in a neighborhood of
that point but also the nonlocal behavior of u elsewhere in Ω. For example, at any point in Ω the partial differential
equation and/or boundary conditions may contain integrals of u over parts of Ω, values of u elsewhere in Ω or, generally
speaking, some nonlocal operator on u. Indeed, nonlocal conditions can be more useful than standard conditions to
describe some physical phenomena.

Boundary value problems with shift is a simple class of nonlocal problems. This class of nonlocal problems have
been studied by V.A. Steklov, F.I. Frankl, A.V. Bitsadze, A.M. Nakhushev, A.N. Zarubin, O.A. Repin, E.A. Utkina and
their students (see [1]).

Integral boundary conditions are generalization of the problems with shift. The study of boundary value problems
for parabolic and hyperbolic equations with integral conditions, initiated by J. Cannon [2] and L.I. Kamynin [3], has
been developed by N.I. Ionkin [4], L.A. Muravei and A.V. Filinovsky [5], S. Mesloub and S.A. Messaoudi [6], A.
Bouziani [7], A.I. Kozhanov [8, 9], L.S. Pulkina [9, 10] and the others.

STATEMENT OF PROBLEMS

Let Ω ⊂ R2 be a domain bounded by characteristics

AC : ξ = x− 2
m+2

y
m+2

2 = 0, BC : η = x+
2

m+2
y

m+2
2 = 1

of the following degenerate second order hyperbolic equation

L(u) := ymuxx −uyy = f (x,y), m = const > 0, (1)

and by the segment AB : 0 ≤ x ≤ 1 of the line y = 0. Hereinafter, by I we denote unit interval (0,1), and by Ω we
denote closure of Ω. Let β = m

2m+4 .

Problem OPCP1. To find in Ω the solution u(x,y) of equation (1) from C(Ω)∩C1(Ω), satisfying the conditions

u|AB ≡ u(x,0) = τ(x), 0 < x < 1, (2)

uy|AB ≡ uy(x,0) = S1u(x)+ν(x), 0 < x < 1, (3)

where S1 : C(Ω)→C1−β [0,1].
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Problem OPCP2. To find in Ω the solution u(x,y) of equation (1) from C(Ω)∩C1(Ω), satisfying the conditions

u|AB ≡ u(x,0) = S2u(x)+ τ(x), 0 < x < 1, (4)

uy|AB ≡ uy(x,0) = ν(x), 0 < x < 1, (5)

where S2 : C(Ω)→Cβ [0,1].

Problem OPCP3. To find in Ω the solution u(x,y) of the equation

L(u) := ymuxx −uyy +S3u(x) = f (x,y), m = const > 0 (6)

from C(Ω)∩C1(Ω), satisfying conditions (2)–(5), where S3 : C(Ω)→C(Ω).

MAIN RESULTS

Let us consider the operators

T1h : = Γ
(

m+4
m+2

)
/Γ2

(
m+4
2m+4

)
y

1∫
0

h
[

x+
2(1−2t)

m+2
y

m+2
2

]
[t(1− t)]−

m
2m+4 dt,

T2v : = Γ
(

m+4
m+2

)
/Γ2

(
m+4
2m+4

) 1∫
0

v
[

x+
2(1−2t)

m+2
y

m+2
2

]
[t(1− t)]−

m+4
2m+4 dt,

T3g : =−
x+ 2

m+2 y
m+2

2∫
x− 2

m+2 y
m+2

2

x+ 2
m+2 y

m+2
2∫

x1

H(t,x1,x−
2

m+2
y

m+2
2 ,x+

2
m+2

y
m+2

2 )g(t,x1)dtdx1,

where H(t,x1,x,y) is a Riemann function of (1), which has an explicit form [11, p. 264]. Denote Vi = −Si ◦Ti, i =
1,2,3.

Theorem 1. Let τ(x)∈Cβ [0,1], ν(x)∈C1−β [0,1] and f (x,y)∈C(Ω). If V1 : C[0,1]→C1−β [0,1] is a Volterra integral
operator with weak singularity in the kernel, then problem OPCP1 is uniquely solvable.

Proof. We denote ϕ(x) = S1u(x), x ∈ Ī. Then, condition (3) can be written as

uy|AB = ϕ(x)+ν(x), x ∈ Ī. (7)

From ([11, p. 264], [12, p. 12]) it follows that if ϕ(x)∈C1−β [0,1], then the solution of equation (1) with Cauchy initial
data (2), (7) has the form

u = T1ν +T1ϕ +T2τ +T3 f . (8)

By applying the operator S1 to the both sides of equation (8), we get integral equation

ϕ +V1ϕ = F, (9)

where
F = S1(T1ν +T2τ +T3 f ),

and F(x) ∈ C1−β [0,1]. By virtue of this, equation (9) is a Volterra integral equation of the second kind with weak
singularity in the kernel, which is uniquely solvable in the space C[0,1] and ϕ(x) ∈ C[0,1]. From V1 : C[0,1] →
C1−β [0,1], it follows that ϕ(x) ∈C1−β [0,1].

The following theorems are proved similarly.

Theorem 2. Let τ(x) ∈Cβ [0,1], ν(x) ∈C1−β [0,1] and f (x,y) ∈C(Ω). If V2 : C[0,1]→Cβ [0,1] is a Volterra integral
operator with weak singularity in the kernel, then problem OPCP2 is uniquely solvable.

Theorem 3. Let τ(x) ∈ Cβ [0,1], ν(x) ∈ C1−β [0,1] and f (x,y) ∈ C(Ω). If V3 : C(Ω) → C(Ω) is a Volterra integral
operator with weak singularity in the kernel, then the problem OPCP3 is uniquely solvable.
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EXAMPLE OF S1

Let the operator S1 be of the following form

S1r =
x∫

0

dx1

κ(x,x1)∫
0

K(x1,y1,x)r(x1,y1)dy1,

where

κ(x,x1) =

(
m+2

2
x1

) 2
m+2

for 0 < x1 <
x
2
,

and

κ(x,x1) =

(
m+2

2
(x− x1)

) 2
m+2

for
x
2
< x1 < x.

Here the kernel K(x1,y1,x) has the following structure

K(x1,y1,x) :=
(

x1 −
2

m+2
y

m+2
2

1

)−a

K1(x1,y1,x),

where

K1(x1,y1,x) ∈C(Ω× Ī),
∂K1

∂x
(x1,y1,x) ∈C(Ω× Ī),

and a is some real number. If a < 2
m+2 , then V1 is a Volterra integral operator with weak singularity in the kernel as

the operator acting from C[0,1] to C1−β [0,1]. For more details see [13].
Note that the problems with integral perturbations of boundary conditions have been investigated in [14–16] by the

author in collaboration with T.Sh. Kalmenov, B.E. Kanguzhin and D. Suragan. Also see [17–26].
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