$\mathbf{DN201}$ 5

International Workshop on Warm Dense Matter

June 7-13, 2015 at kurashiki bikan historical quarter in Japan

-	
p09-16	Development of Time-Resolved X-ray Absorption Spectroscopy Apparatus for Warm and Dense Matters Young Hoon Kim, Gwangju Institute of Science and Technology (GIST), Korea
p09-17	Self-consistent description of optical and electronic properties of warm dense matter Ilnur Saitov, Joint Institute for High Temperatures, Russia
p09-18	Continuum Lowering in Warm Dense Matter Rory Baggott, University of Warwick, UK
p09-19	Pressure and free electrons in warm dense matter Vladimir Stegailov, Joint Institute for High Temperatures of Russian Academy of Sciences, Russia
p09-20	Modeling Iron Plasma in Non-local Thermodynamic Equilibrium using the Flexible Atomic Code data Feilu Wang, National Astronomical Observatories, Chinese Academy of Sciences, China
p09-21	Modeling of fragmentation of laser irradiated tin droplet target for extreme ultraviolet (EUV) light sources Akira Sasaki, Japan Atomic Energy Agency, Japan
p09-22	Transport properties of hot dense plasma Sandugash Kodanova, IETP, Al-Farabi Kazakh National University, Kazakhstan
p09-23	Ion Potential in Warm Dense Matter with Stationary Flowing Quantum Electrons Zhandos Moldabekov , Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Kazakhstan
p09-24	Thermodynamic properties of warm dense matter Tomiris Ismagambetova , IETP, al-Farabi Kazakh National University (KazNU), Kazakhstan
p09-25	Melting curves of metals with heated electrons by ab initio calculations Dmitry Minakov, Moscow Institute of Physics and Technology, Russia
p09-26	Molecular Dynamics Study of MgO Francoise Remus, CEA/DIF, FRANCE
p09-27	High-energy density material experiemnts using high-power lasers and X-ray free electron laser Norimasa Ozaki, Osaka University, Japan
p09-28	In situ XFEL measurement system for materials under laser-induced ultrahigh-pressure conditions Yoshinori Tange, Japan Synchrotron Radiation Research Institute, Japan
p09-29	X-ray diffraction observation of shock-compressed quartz Tomoko Sato, Hiroshima University, Japan

Transport properties of hot dense plasma

Sandugash Kodanova¹, Tlekkabul Ramazanov¹, Moldir Issanova¹

¹IETP, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Investigation of transport properties in dense plasmas is one of the key issues in the physics of inertial confinement fusion (ICF), warm dense matter driven by heavy ion beams [1]. Calculation of parameters of inertial fusion drivers of heavy ion beams requires adequate quantitative description of the interaction of heavy ion beams with dense plasma in a wide range of parameters. Consequently, knowledge of transport properties in the plasma will enable us to calculate the design of thermonuclear target more accurately. These properties of plasma have to be calculated accurately taking into account both quantum and collective effects in plasmas. One of the important values that describing the transport coefficients of deuterium-tritium plasma is the Coulomb logarithm [2]. The Coulomb logarithm is obtained on the basis of effective potentials. These interaction potentials take into consideration long-range many particle screening effects as well as short-range quantum-mechanical effects [3]. For inertial confinement fusion applications, we have calculated deuterium thermal conductivity and electroconductivity in a wide range of densities and temperatures. The results obtained for thermal conductivity and electroconductivity are compared with the available experimental data [4] and the results of quantum molecular-dynamics simulation [5].

Reference

[1] V.E. Fortov. Extreme states of matter on Earth and in the Cosmos. –Springer, (2009)
[2] T.S. Ramazanov, S.K. Kodanova, Zh.A. Moldabekov, M.K.Issanova. Phys. Plasmas 20, 112702 (2013)

[3] S.K. Kodanova, T.S. Ramazanov, M.K. Issanova, Zh.A. Moldabekov, G. Nigmetova. Contrib. Plasma Phys. 55, No. 2-3, 271 – 276 (2015)

[4] J.R. Adams, N.S. Shilkin, V.E. Fortov, V.K. Gryaznov, V.B. Mintsev, R. Redmer, H. Reinholz, and G. Ropke. Phys. Plasmas. 2007. - Vol. 14, P.062303.

[5] S.X. Hu, L.A. Collins, T.R. Boehly, J.D. Kress, V.N. Goncharov and S. Skupsky. Phys. Rev. E 89, 043105 (2014)

*E-mail address: kodanova@mail.ru