15<sup>th</sup> International Conference on the Physics of Non-Ideal Plasmas **YNH** Almaty, August 30- September 4, 2015

# **Book of Abstracts**

15<sup>th</sup> International Conference on the Physics of Non-Ideal Plasmas Almaty, August 30 - September 4, 2015



National Laboratory of Nanotechnology

**Engineering Profile** 

Laboratory of



Institute of Experimental and Theoretical Physics









Insitute of Applied Sciences and Information Technologies



## Almaty, August 30 - September 4, 2015

| Nr.   | Name            | Surname      | Title of Contribution                                                                                                                        |
|-------|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| D1 1  | Sebastien       | Hamel        | First-principles calculations of the high-pressure melting line of SiO2 and strenght                                                         |
| P1.1  | Sepastien       | пашег        | of H2O: planetary science implications                                                                                                       |
| P1.2  | Ayatola         | Gabdulin     | MD Simulation of 2D System of Polarized Dust Particles                                                                                       |
| P1.3  | Anatoly         | Kupchishin   | Cascade-Probability Method and Relationship with Markov Chains                                                                               |
| P1.4  | Alexandr        | Larkin       | Numerical Calculation of Thermodynamical Calculation of Thermodynamical                                                                      |
|       |                 |              | Properties of Relativistic Particle in Potential Field                                                                                       |
| P1.5  | Yaroslav        | Lavrinenko   | Boundary condition problem for atomistic simulations of classical and quantum                                                                |
|       |                 |              | strongly coupled systems of charged particles                                                                                                |
| P1.6  |                 | Magyar       | Quadratic static response of the classical One-Component Plasma                                                                              |
|       | Alexey          | Andreyev     | Foundation of thermodynamics within the laws of the classical mechanics                                                                      |
| P1.8  |                 | Arkhipov     | Effective potentials in semiclassical two-component plasmas                                                                                  |
| P1.9  |                 | Ashikbayeva  | Dynamic properties of Dirac plasmas in the random-phase approximation                                                                        |
| P1.10 | Alexander       | Chigvintsev  | Anomalous Phase Diagram in Simplest Plasma Model                                                                                             |
| P1.11 | Yultuz          | Omarbakiyeva | Cluster virial expansion of the equation of state for hydrogen plasma with $e - H_2$ contributions                                           |
| P1.12 | Jean-Christophe | Pain         | Multi-configuration modeling of ionization potential depression in dense plasmas                                                             |
| P1.13 | Aleksey         | Shumikhin    | The distinguishing features of the vapor-liquid (dielectric-metal) phase transition in metal vapors, semiconductors and rare gases           |
| P1.14 | Moldir          | Issanova     | Transport properties of inertial confinement fusion dense plasmas                                                                            |
| P1.15 | Nadine          | Nettelmann   | Warm Dense Hydrogen and Helium in Jupiter and Saturn: exploration of He sedimentation                                                        |
| P1.16 | Nuriya          | Bastykova    | Controlled levitation of dust particles in rf+dc gas discharges                                                                              |
| P1.17 | Didar           | Batryshev    | Extraction of nano- and small dispersed microparticles in the plasma of radio-<br>frequency discharge                                        |
| P1.18 | Lidia           | Deputatova   | Measurement of the charge of a single particle confined by the electrodynamic trap                                                           |
| P1.19 | Merlan          | Dosbolayev   | The influence of the ionic composition of the plasma on dust structures in the combined discharge of radiofrequency and electrostatic fields |
| P1.20 | Young-Dae       | Jung         | Nonthermal and geometric effects on the dual-mode surface waves in a Lorentzian dusty plasma slab                                            |
| P1.21 | Irina           | Filatova     | Plasma-assisted Functionalization of ZnO Nanoparticles and Production of Nanocrystalline ZnO Structures                                      |
| P1.22 | Alexey          | Khrapak      | Complex plasma research under microgravity conditions: PK-3 Plus laboratory on the International Space Station                               |
| P1.23 | Ranna           | Masheyeva    | Effect of buffer gas induced friction on the cage correlation function of dust particles                                                     |
| P1.24 | Vladimir        | Messerle     | Plasma for Fuel Processing                                                                                                                   |
| P1.25 | Mukhit          | Muratov      | Influence of dipole interaction on the thermodynamic properties of dusty plasma                                                              |

### P1.14

#### Transport properties of inertial confinement fusion dense plasmas

Kodanova S.K., Ramazanov T.S., <u>Issanova M.K.</u> *IETP, AI-Farabi Kazakh National University, Almaty, Kazakhstan, AI-Farabi av., 71* 

isanova moldir@mail.ru

Studying of transport properties of the dense plasma is a great importance for plasma physics, as well as for the problems of inertial confinement fusion (ICF), warm dense matter driven by heavy ion beams [1]. Calculation of parameters of inertial fusion drivers  $n_e > 10^{22} cM^{-3}$  of heavy ion beams requires adequate quantitative description of the interaction of heavy ion beams with dense plasma in a wide range of parameters. Consequently, knowledge of transport properties in the plasma will enable us to calculate the design of thermonuclear target more accurately. These properties of plasma can be calculated accurately taking into account both quantum and collective effects in plasmas. One of the important values describing the transport coefficients of deuterium-tritium plasma is the Coulomb logarithm [2]. The Coulomb logarithm is obtained on the basis of effective potentials. These interaction potentials take into consideration long-range many particle screening effects as well as short-range quantum-mechanical effects [3]. For inertial confinement fusion applications, we have calculated deuterium thermal conductivity and electrical conductivity in a wide range of densities and temperatures. The results obtained for thermal conductivity and electrical conductivity are compared with the available experimental data [4] and the results of quantum molecular-dynamics simulation [5].

#### References

V.E. Fortov. Extreme states of matter on Earth and in the Cosmos. – *Springer*, 2009
T.S. Ramazanov, S.K. Kodanova, Zh.A. Moldabekov, M.K.Issanova. *Phys. Plasmas*, 2013, 20, P. 112702.

[3] S.K. Kodanova, T.S. Ramazanov, M.K. Issanova, Zh.A. Moldabekov, G. Nigmetova. *Contrib. Plasma Phys.*, 2015, 55 (2-3), pp 271 – 276.

[4] J.R. Adams, N.S. Shilkin, V.E. Fortov, V.K. Gryaznov, V.B. Mintsev, R. Redmer, H. Reinholz, and G. Ropke. *Phys. Plasmas*, 2007, 14, P. 062303.

[5] S.X. Hu, L.A. Collins, T.R. Boehly, J.D. Kress, V.N. Goncharov and S. Skupsky. *Phys. Rev.*, 2014, E 89, P. 043105.