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We consider the inverse problem of determining the coefficient of g(x) from equations

u, =u,—q(x)u, xecR, t>0 (1)
u lr=0= 0= Hr l:=0= (5(){) (2')
w(0,0)=r(), 20 (3)

This problem can be reduced to the equation of .M. Gel’fand and B.M. Levitan [2].

l x

= [r(t = %)+ r(e + x)]+ jr(r —7)w(x,7)dzr =0 (4)
We use the minimization method to solve equation (4). We rewrite equation (4) in operator form

Ag=7f (5)

Here f(t) = —é(r(f —x)+r(t+x)), g(s)=wlx,7).

We will find the pseudo-solution g of the integral equation (5) minimizing the cost function

J(g)= "Ag --f"2 — min, (6)

We compare two methods of solving (4) namely, the method of conjugate gradient and Cholesky
decomposition, which is a decomposition of a Hermitian, positive-definite matrix into the product of
a lower triangular matrix and its conjugate transpose. When it is applicable, the Cholesky decomposition
is roughly twice as efficient as the LU decomposition for solving systems of linear equations. In a loose,
metaphorical sense, this can be thought of as the matrix analogue of taking the square root of a number.

The conjugate gradient method is an iterative method, so it can be applied to sparse system that are
too large to be handled by direct methods such as the Cholesky decomposition.

To solve (5). We apply the conjugate gradient method

gnﬂ(s):gn{s)_anpu? gu EQ‘ an >0 (7}

Here

pn = J'g" 35 ||""”gn“2 ”J:gn—ll = gn-] 1

Gradient of functional J(g)

Jg, =24"(4g, - f)

Can be found using the representation of the adjoin operator




-

Jg, =2 [r(€ ~5) [r(& - B)g, (B)dpdE -2 [r(£ - 5)g(&)dé.
We denote
1,(8)= [r&-Bg,(Bdp. ©)

We repalce the integral quadrature sum of the trapezoid rule

1,(6)~05 (& B)g,(B) +rE B8, (B )N

J==n+l

We denote

165)= [r(E-9)1,(E)de. (10)
W fisgilos e iteaeali(UO) N Ao HhE Sase

1(5)%05 Y (&, = )1, () + &y — 9, ()

i=—n+]

We get similary, using a quadrature formula

1,(5)= [HE-)g(©)de =05 3 Hr(E —9)gE)+rE ., ~ ()

==l
We obtain
Jg. =2I(s7)—21,(s") (11)
The report presents the results of the calculations.
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