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The problem of calculation of the electric charge of dust particles in a plasma is considered from different points
of view. At first the charging of polarizable dust particles is studied within the orbital motion limited approach.
Secondly, the plasma electrodynamics is applied to show that the electric charge of a dust particle is determined
by the normal component of the dielectric displacement vector near the grain surface rather than the normal
component of the electric field strength. And, finally, the chemical model, initially proposed for determination
of partially ionized plasma composition, is demonstrated to be very productive in evaluating the electric charge
of the dust component.
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1 Introduction

In modern theoretical and experimental plasma physics an interest to the study of a dusty plasma is still heated
up by its abundance in the near space [1, 2] and in the universe [3–5], as well as by its extensive exploitation
in laboratories [6–8]. In particular, astrophysics explores the dusty plasma in stellar and planetary nebulae,
supernova remnants, asteroids, planetary rings and comet tails. On Earth, a dusty plasma occurs at the lightning
discharge, in craters of active volcanoes, at the fall of large meteorites, as well as in noctilucent clouds. From
a technological point of view dust may play a negative role of plasma contaminant, as it is the case for plasma
etching in microelectronics, or in installations designed for controlled nuclear fusion.

It has long been known that dust particles, immersed in a plasma, can form different structures with short-
and long-range orders, which can be interpreted as liquid and crystalline phases, respectively [9–12]. In such
systems, even phase transitions are observed and studied by different methods [13–15]. This straightforwardly
testifies that a strong interaction does exist between the dust particles in the plasma, whose average energy can
significantly exceed the thermal energy of their chaotic motion. Such nonideality in the system is a consequence
of that, being placed in a plasma, the dust grains starts to intensively absorb electrons and acquire a high negative
electric charge, which can reach tens of thousands of the elementary [16, 17]. Thus, it is clear that an ability to
predict the electric charge of dust particles is crucial for comprehensive understanding of physical properties of
dusty plasmas.

It is well known that the problem of theoretical calculation of the dust particle charge in a plasma is closely
related to the theory of a so-called Langmuir probe, which is widely used for plasma diagnostics. The standard
approach here is to use the orbital motion limited approximation [18], which assumes that the buffer plasma
remains quasi-neutral and Maxwellian far away from the dust grain, and the mean free paths of plasma particles
are much greater than the characteristic size of the sheath. This allows one to consider only ballistic trajectories
of electrons and ions, and further use of the conservation laws of energy and angular momentum makes it possible
to derive the corresponding absorption cross sections, and, hence, to determine the charge of the dust particle, or
the current-voltage characteristics of a Langmuir probe.
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It is implied in the classical version of the orbital motion limited approximation that effective interaction
energies between the plasma particles and the dust grain that include a centrifugal component are monotonic
functions of the distance between them, which is not always accurate. Taking into account the shielding results
in the appearance of the so-called absorption radius effect, which is caused by the onset of local maxima in the
curve of the effective interaction energy [19, 20]. At the same time there is a need to treat the anisotropy of the
ion flow near the dust grain, which is due to the accelerating field of the plasma sheath [21].

It is clear that a variety of physical conditions, under which a dusty plasma is encountered, may lead to a
deviation of the velocity distribution functions of electrons and ions from the Maxwellian, which immediately
affects the charge of dust particles themselves. Such deviations of the velocity distribution function are particu-
larly frequent in space dusty plasmas and various astrophysical objects. Thus, the charge of the dust particle was
studied for the Lorentzian spherical velocity distribution function [22], for the so-called bi-Maxwellian electron
distribution function [23] as well as for the power distribution function [24, 25], obtained in the framework of
non-extensive statistics, taking into account the long-range nature of the Coulomb interaction and the processes
of the secondary electron emission [26].

A more consistent approach in the framework of the orbital motion limited theory was proposed in [27], where
the Vlasov kinetic equation for a collisionless plasma was solved together with the Poisson equation. This allowed
the authors to determine the so-called floating potential of the dust grain by imposing the equality of electron and
ion fluxes on the dust surface, and thereby to calculate its electrical charge. Such a theoretical approach has a
drawback that for sufficiently large dust particles ion concentration may turn out imaginary [28]. It took a further
complication of the orbital motion limited theory, including an account for the acceleration of ions in an electric
field of the sheath [29, 30].

With the growth of the plasma density the role of collisions, especially with the neutrals, increases dramat-
ically so that the trajectories of electrons and ions in a plasma can no longer be regarded as ballistic. To treat
interparticle collisions consistently it is necessary to solve the kinetic equation [31], which can be done both
phenomenologically [32], and using computer simulations in the framework of the particles-in-cell method [33].

It is easy to imagine that the orbital motion limited approximation presumes that the electron and ion fluxes on
the dust depend on their spatial distribution and the charge of the dust particle itself. In this sense, the equilibrium
charge of the dust grain, usually derived from the equality of electron and ions fluxes, is completely determined
by the parameters of the buffer plasma and independent of both the material the dust particle is made of and of
elementary processes taking place on its surface. That is why the orbital motion limited approximation works
rather well only for the dust particles whose dimensions are small compared to the Debye radius [34]. It is obvious
that the above presented interpretation, in spite of its attractiveness, is unsatisfactory from the physical point of
view, since it essentially exploits the idea that the surface of the dust particle is a perfect absorber of incoming
electrons and ions [35]. To avoid such an unjustified assumption an attempt was made in [36,37] to develop a true
microscopic theory that takes into account the near-surface states of electrons and ions appearing as a result of
the polarization of dust particles. Moreover, the electron emission from the surface of dust particles [38], which
is determined by the work function of electrons, and the secondary electron emission [39] should be thoroughly
included.

It should be noted that the electric charge and its dependence on the grain size can be measured in sophisticated
experiments [40], which continue to develop at present [41, 42]. It is remarkable that the dust particles can
themselves be used to diagnose the buffer plasma by their motion around a cylindrical Langmuir probe [43].

The sketch of the sequel in this paper is outlined as follows. In section 2 the orbital motion limited approxi-
mation is engaged to determine how the polarization phenomena influence the electric charge of a dust particle
immersed in a buffer plasma. Section 3 is completely devoted to plasma electrodynamics as applied to the prob-
lem of the electric charge of a dust particle. In section 4 an attempt is undertaken to construct a chemical model
of a dusty plasma in order to evaluate the electric charge of a dust component from the free energy minimization
procedure. At the end conclusions are drawn and provisions for future works are stated.

2 Orbital motion limited approximation

For the sake of simplicity this section deals with the hydrogen buffer plasma with the electron number density
ne and the proton number density np = ne = n, in which a spherical macroscopic particle of radius R and

www.cpp-journal.org c© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



310 A.E. Davletov et al.: Electric charge of dust particles

the electric charge −Zde is placed Since the dust particle is solitary, the quasineutrality condition ne = np is
imposed. The state of the electron component of the plasma is described by the density parameter rs = a/aB ,
where a = (3/4πn)1/3 denotes the average distance between the electrons, aB = �

2/mee
2 stands for the first

Bohr radius with � being the Planck constant and e being the elementary electric charge. Another dimensionless
parameter relevant for description of the state of the buffer plasma is the so-called called coupling parameter
given by Γ = e2/(akBT ), where kB is the Boltzmann constant and T designates the ambient temperature. It
should be emphasized that the coupling parameter is common to represent the ratio of the average Coulomb
interaction energy of the electrons to their average kinetic energy of thermal motion. To take into account the
finite dimensions of the dust particle, the size parameter is introduced as D = a/R to show how many times
the average distance between the buffer plasma particles is larger or less than the radius of the dust grain. Note
that to determine the electric charge of the dust particle in the classical case it is sufficient to only point out one
dimensionless parameter ΓR = e2/(RkBT ) = DΓ.

Further consideration of the charging process is carried out within the orbital motion limited approximation, in
which trajectories of plasma particles, i.e. electrons and protons, are considered ballistic such that the interparticle
collisions are completely ignored. To justify such an approach the mean free paths of plasma particles �e(p)
should be much greater than the so-called Debye screening length rD =

√
kBT/4π(ne + np)e2, which, in its

turn, should significantly exceed the dust grain radius R, i.e. R� rD � �e(p),
It is believed in the classical treatment of dust particle charging that the material of the dust is a perfect

absorber, i.e. all the plasma particles that reach the grain surface are inevitably taken up. This typically leads to
that the grain charge is determined by the buffer plasma parameters and, thus, independent of the dust material.
On the other hand it is known that a charged double-layer exists near the surface of solids, and whenever an
attempt is undertaken to pull an electron out of a solid, the polarization phenomena come to play an essential
role to cause an additional attraction. This results in that to extract an electron from the bulk of a solid it is
necessary to perform some work, which is called a work function. The main idea of this section is to account
for the polarization effects, which should ultimately lead to a true microscopic theory for the charge of the dust
particle in a plasma.

Consider the interaction of a proton with a spherical dust particle, which is made of a conductive material. To
take into account the polarization of the dust grain, the potential energy of the interaction is written with the aid
of the charge image method as [44]:

Udp(r) = −Zde
2

r
− e2R3

2r2(r2 −R2)
. (1)

Interaction potential (1) between the proton and the dust consists of two parts. The first part is determined by the
dust particle charge and the plasma distribution around it, i.e. the sheath formation. It is that way the charging of
dust particles was interpreted in the literature until very recently. It is visible from (1) that the screening of the
electric field is completely dropped out to avoid explicit construction of the sheath theory that produces minor
numerical corrections to the final result. The second part of the interaction potential is governed by the interaction
with surface charges of the dust matter stemming from the polarization effects.

Let a dust particle absorb a proton with the fixed energy E and the impact parameter ρ. It is known [45] that
this process is governed by the effective potential energy defined as

U eff
dp (r, ρ, E) = −Zde

2

r
− e2R3

2r2(r2 −R2)
+ E

ρ2

r2
. (2)

At the impact parameter ρ = 0, the effective potential energy of interaction between the proton and the dust
particle is a monotonically increasing function of the distance, it is negative everywhere and tends to −∞ when
the proton approaches the surface of the dust particle. Thus, the proton with the impact parameter ρ = 0 is
surely absorbed by the grain. At the fixed energy an increase in the impact parameter results in that a maximum
appears in the curve of the effective potential energy whose height grows while increasing ρ. It is then evident
that protons with small values of the impact parameter are absorbed by the dust particle, but at a certain value,
ρ = ρdp, the height of the maximum of the effective potential energy turns equal to the total energy of the proton
causing its rebound. Obviously, this value ρdp fully determines the absorption cross section as σdp = πρ2dp. All
above said is summarized in Figure 1, which shows that the protons with the energy E/kBT = 1 and the impact
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parameters ρ = 0 and ρ = 1 are absorbed by the dust particle, and those with the impact parameter ρ = 2 are
scattered. The black line in Figure 1 corresponds to the value ρ = ρdp ≈ 1.6, which divides the whole region of
the proton impact parameters into the absorption and rebound domains.

1 2 3 4 5
 2

 1

0

1

2

r / R

U
e dp

ff
/ k

   B
 T

Fig. 1 The effective interaction energy between the proton and
the dust particle at E/kBT = 1 and ΓR = 0.1. Green line:
ρ = 0; magenta line: ρ = 1; black line: ρ = ρdp ≈ 1.6 that
corresponds to the critical value at which the proton begins to
rebound from the dust grain; blue line: ρ = 2; red line: the
total energy of the proton E/kBT = 1.

Thus, ρdp is obtained from the following equation

maxU eff
dp (r, ρdp, E)r≥R = E. (3)

The numerical solution to (3) is found as follows. For a fixed value of the proton energy E it is necessary to
find such ρ = ρdp that the maximum of effective potential energy (2) should exactly be equal to the total energy
E. Figure 2 shows the dependence of the absorption cross section σdp = πρ2dp on the energy of the incident
proton at different values of the dust particle charge. It is seen that the proton absorption cross section grows
when the dust charge increases.

The maximum in the effective interaction energy can be found from the relation dU eff
dp (r, ρ, E)/dr = 0 and

since its position is very close to the dust particle surface, as evidenced by Figure 1, it is suitable to search for an
approximate solution to equation (3) in the form of r = R+ δ with δ � R, which yields

δ =
R√

32Eρ2

e2R + 17− 16Zd

(4)

and for the absorption cross section of protons

σdp = πρ2dp = πR2

(
1 +

Zde
2

RE
+

e2

8RE

[√
1 + 16Zd + 32

RE

e2
− 3

])
. (5)

If the polarization effects are neglected, the following classical result is recovered [17]

σC
dp = πR2

(
1 +

Zde
2

RE

)
. (6)

Figure 3 makes a comparison of the absorption cross section of protons, calculated from expression (3) with
formulas (5) and (6) at ΓR = 0.1 and Zd = 15. Since polarization effects lead to an additional attraction of the
proton by the dust particle, they are responsible for an increase in the corresponding absorption cross section. It is
quite natural that formula (5) describes more accurately the behavior of the absorption cross section than formula
(6), which is only valid for pure Coulomb interaction.

Consider the interaction of an electron with the same spherical dust particle. To account for the polarization of
the dust grain, the potential energy of the interaction is written with the aid of the charge image method as [44]:

Ude(r) =
Zde

2

r
− e2R3

2r2(r2 −R2)
. (7)

www.cpp-journal.org c© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



312 A.E. Davletov et al.: Electric charge of dust particles

0 1 2 3 4 5
4

5

6

7

8

9

10

E / kBT

 

dp
/  

R
2

σ
π

Fig. 2 The proton absorption cross section by the dust par-
ticle as a function of the energy of the incident proton at
ΓR = 0.1. Red line: Zd = 5; blue line: Zd = 10; black
line: Zd = 15.
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Fig. 3 The proton absorption cross section by the dust par-
ticle as a function of the energy of the incident proton at
ΓR = 0.1, Zd = 15. Red line: formula (6); blue line: for-
mula (5); black line: exact result from equation (3).
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Fig. 4 The critical energy of electrons as a function of the
dust particle charge. Red line: ΓR = 0.1; blue line: ΓR =
0.5; black line: ΓR = 1.0.
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Fig. 5 The critical energy of electrons as a function of the
dust particle charge at ΓR = 0.1. Red line: formula (10);
blue line: formula (9); black line: exact result.

There is a significant difference for the interaction of the electron with the dust particle as compared to its
interaction with the proton. Due to the mutual repulsion the electron absorption is only possible when its energy
reaches the critical value Ec determined as:

Ec = maxUde(r). (8)

Under the assumption that the rebound of the electron occurs close to the dust particle surface, series expansion
allows one to roughly solve equation (8) as

Ea
c =

e2

R

(
Zd +

5

8
− 1

8

√
17 + 16Zd

)
. (9)
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Note that in case of the pure Coulomb interaction between the electron and the dust grain the critical energy
is exactly found from the energy conservation law as follows [17]

EC
c =

Zde
2

R
. (10)

Figures 4 displays the dependence of the critical energy on the dust particle charge and the coupling parameter
of the buffer plasma to show that both dependencies are almost linear whereas Figure 5 provides a comparison of
exact expression (8) with approximate formulas (9) and (10). It can be seen that equation (9) better describes the
exact data obtained from formula (8) than expression (10) which completely ignores the polarization of the dust
particle. At the same time, it is rather obvious that the polarization phenomena are responsible for an additional
attraction of electrons, and thus the value of the critical energy is reduced as compared to the expression for pure
Coulomb interaction (10).

Let a dust particle absorb an electron with the fixed energy E and the impact parameter ρ. Again, this process
is governed by the effective potential energy defined as [45]:

U eff
de (r, ρ, E) =

Zde
2

r
− e2R3

2r2(r2 −R2)
+ E

ρ2

r2
. (11)

The analysis implemented above for the absorption of the proton is simply repeated for the absorption of the
electron to find ρde from the equation

maxU eff
de (r, ρde, E)r≥R = E (12)

and, then, to obtain an approximate solution in the form

σde = πρ2de = πR2

(
1− Zde

2

RE
− e2

8RE

[√
1− 16Zd + 32

RE

e2
+ 3

])
(13)

that recovers the classical result for the Coulomb interaction potential [17]

σC
de = πR2

(
1− Zde

2

RE

)
. (14)

It is known that the proton flux on the surface of the dust particle is obtained from the relevant absorption cross
section by integrating over the velocity distribution function as:

Jp = np

∫
vσdpfp(v)dv, (15)

where fp(v) = (2πv2Tp)
−3/2 exp(−v2/2v2Tp) is the Maxwell distribution with the thermal velocity vTp =√

kBT/mp and mp being the proton mass.
Substituting expression (5) into (15) gives rise to the following analytical approximation for the proton flux

on the dust grain surface

Ja
p =

√
8πkBT

mp
nR2

(
1 +

e2

RkBT

[
Zd +

√
1 + 16Zd

8
− 3

8

]
+

+

√
πe2

8RkBT
exp

(
e2(1 + 16Zd)

32RkBT

)
erfc

⎛
⎝
√

e2(1 + 16Zd)

32RkBT

⎞
⎠
⎞
⎠ , (16)

where the error function and its complementary counterpart are mathematically defined as erf(z) = 1−erfc(z) =

2√
π

z∫
0

exp(−t2)dt.
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In case of the pure Coulomb interaction, expression (16) reduces to the classical result of the form [17]

JC
p =

√
8πkBT

mp
nR2

(
1 +

Zde
2

RkBT

)
. (17)

Figure 6 portrays the dependence of the proton flux on the particle surface as a function of its charge to
demonstrate that it grows due to reciprocal attraction when the charge of the dust particle increases. It is rather
interesting to observe that the corresponding relationships are quite linear. In Figure 7 a comparison is made of
the proton flux on the dust particle, calculated from expression (15), with formulas (16) and (17) for a fixed value
of the charge number Zd = 15. The polarization effects lead to an additional attraction of electrons by the dust
particle and are responsible for an increase in the corresponding flux. Figure 7 reveals that analytical formula (16)
neater follows the behavior of the proton flux than formula (17), which is valid for the case of the pure Coulomb
interaction.
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Fig. 6 The normalized proton flux on the surface of the dust
particle as a function of the dust charge number Zd. Red
line: ΓR = 0.1; blue line: ΓR = 0.25; black line: ΓR =
0.5.
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Fig. 7 The normalized proton flux on the surface of the dust
particle as a function of the coupling parameter ΓR at Zd =
15. Red line: formula (17); blue line: formula (16); black
line: exact result from formula (15).

Quite an analogous procedure provides the following approximate expression for the electron flux on the dust
grain surface

Ja
e =

√
8πkBT

me
nR2

[(
1− e2

8RkBT

(√
17 + 16Zd − 2

)
exp

(
− e2

RkBT

(
Zd +

5

8

−
√
17 + 16Zd

8

)))
+

√
πe2

8RkBT

(
1 + exp

(
−e2(21 + 16Zd − 4

√
17 + 16Zd)

32RkBT

)
√

e2(21 + 16Zd − 4
√
17 + 16Zd)

8πRkBT
+ erf

⎛
⎝−

√
e2(21 + 16Zd − 4

√
17 + 16Zd)

32RkBT

⎞
⎠
⎞
⎠

exp

(
−e2(16Zd − 1)

32RkBT

)]
(18)

that, in the classical case of Coulomb interaction, is simplified to [17]

JC
e =

√
8πkBT

me
nR2 exp

(
− Zde

2

RkBT

)
. (19)

It is known that the charge of the dust particle is found by equating the electron and proton fluxes on its surface
as

Je = Jp, (20)
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which, with the aid of expressions (16) and (18), can approximately be written in the simple analytical form

√
me

mp

⎛
⎝1 +

e2

RkBT

[
Zd +

√
1 + 16Zd

8
− 3

8

]
+

√
πe2

8RkBT
exp

(
e2(1 + 16Zd)

32RkBT

)

erfc

⎛
⎝
√

e2(1 + 16Zd)

32RkBT

⎞
⎠
⎞
⎠ =

[(
1− e2

8RkBT

(√
17 + 16Zd − 2

)

exp

(
− e2

RkBT

(
Zd +

5

8
−
√
17 + 16Zd

8

)))
+

√
πe2

8RkBT
(1+

exp

(
−e2(21 + 16Zd − 4

√
17 + 16Zd)

32RkBT

)√
e2(21 + 16Zd − 4

√
17 + 16Zd)

8πRkBT
+

+erf

⎛
⎝−

√
e2(21 + 16Zd − 4

√
17 + 16Zd)

32RkBT

⎞
⎠
⎞
⎠ exp

(
−e2(16Zd − 1)

32RkBT

)⎤⎦ (21)

that asserts the following classical result for Coulomb interaction [17]√
me

mp

(
1 +

Zde
2

RkBT

)
= exp

(
− Zde

2

RkBT

)
. (22)

Figure 8 is drawn to make a comparison of the dust particle charge, calculated from expression (20), with
formulas (21) and (22) as a function of the coupling parameter. Since the polarization effects lead to a stronger
increase in the electron flux than the proton flux on the dust particle surface, this results in the growth of the grain
charge. Solutions to equations (21) and (22) better describe the behavior of the grain charge at low values of the
coupling parameter since the polarization plays less significant role in this case. It is rather natural that formula
(21) treats more accurately the behavior of the dust particle charge than formula (22).
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 R
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Fig. 8 The electric charge of the dust particle as a function
of the coupling parameter ΓR. Red line: solution to equation
(22); blue line: solution to equation (21); black line: exact
result from (20).

3 Plasma electrodynamics

It is widely believed in the literature that the dust charge is determined by the normal component of the electric
field strength at the particle surface. This inference is usually made from the following equation for the electric
field strength E as applied to the cylinrical volume of the cross section S shown in Figure 9:∮

E · dS = 4π(σS + ρplV ), (23)
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where σ stands for the surface charge density on the dust particle and ρpl refers to the plasma charge density.
Without any loss of generality the dust grain material can be assumed to be conductive so that the electric field

strength under the grain surface turns zero and, then, applying equation (23) to the infinitesimally thin cylinder,
V → 0, finally yields

En = 4πσ. (24)

Boundary condition (24) is incorrect from the viewpoint of plasma electrodynamics because the cylinder in
equation (23) cannot be taken infinitesimally thin, otherwise one has to inevitably turn to consideration of the
microscopic electric field which rapidly fluctuates over time in contrast to the macroscopically averaged electric
field entering equation (23).

To correctly derive the boundary condition one has to use the following explicit equation for the dielectric
displacement vector D which stems from the plasma electrodynamics:∮

D · dS = 4πσ. (25)

When applied to a rather small cylinder still containing enough number of plasma particles to treat the electric
field macroscopically, equation (25) gives rise to the correct boundary condition

Dn = 4πσ (26)

for the dielectric displacement vector in a plasma near the dust surface.
Boundary condition (25) differs significantly from (24) because the displacement vector D is expressed in

terms of the electric field strength E in the static case of plasma electrodynamics via the integral relation

D(r) =

∫
ε(r− r1)E(r1)dr1, (27)

where ε(r) stands for the plasma dielectric function defined in the configurational space.
It is, thus, rather clear how to accurately work out the problem of the electric charge of the dust grain. One has

to consider a spatially finite plasma with boundary condition (26) and spatially varying plasma parameters, i.e.
to construct an exact theory of the plasma sheath. This is quite a complicated problem to solve analytically and
all further simplified consideration in this section is aimed at establishing what impact expression (26) has on the
interaction between plasma particles and the dust grain.

Fig. 9 To the derivation of a boundary condition between the
plasma and the dust grain surface

It is well known that in a spatially infinite plasma the Fourier transform of the screened interaction poten-
tial Φ̃ab(k) between the particles of species a and b is expressed in terms of the Fourier transform of the true
microscopic interaction potential ϕ̃ab(k) and the plasma static dielectric function ε(k) as:

Φ̃ab(k) = ε(k)−1ϕ̃ab(k), (28)

in which the static dielectric function can be taken in the form of the random phase approximation as

ε(k) = 1 +
k2D
k2

, (29)
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where kD = 1/rD denotes the wavenumber inversed to the Debye screening radius rD.
Using the convolution theorem it is convenient in the sequel to rewrite relation (28) as

Φab(r) =

∫
ε−1(r− r1)ϕab(r1)dr1 (30)

where the kernel is found from equation (29) as

ε−1(r) = δ(r)− k2D
2πr

exp(−kDr). (31)

To practically apply formulas (30) and (31), initially worked out for an infinite plasma, to a spatially finite
plasma of interest it is proposed herein to treat dust grains as point-like charges by counting all distances r from
the dust grain surface so that the interaction micropotentials acquire the form:

ϕab(r) =
Qab

r +Rab
(32)

where the following notation Qed = −Qpd = Zde
2, Red = Rpd = R and Qdd = Z2

de
2, Rdd = 2R is used for

the interaction between the plasma particles and the dust grain and for the intergrain interaction, respectively.
On substituting expressions (31) and (32) into (30), one ultimately gets

Φab(r) = ϕab(r)− Qab

r

(
1− exp(−rkD)− RabkD

2
Bab(r)

)
, (33)

where

Bab(r) = exp((Rab + r)kD)Ei((Rab + r)kD)− exp(kD(Rab − r))Ei(kDRab)

+exp (−(Rab + r)kD) [Ei(−RabkD)− Ei(−(Rab + r)kD)] (34)

with the exponential integral function defined as Ei(x) =
∞∫
x

exp(−t)/t dt.
Note that it is ordinarily assumed in the literature that the screening effects start from the dust grain surface

such that the Debye-like theory gives rise to the following interaction potential

ΦD
ab(r) =

Qab

(r +Rab)(1 + kDRab)
exp (−kDr) . (35)
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Fig. 10 The interaction potential between the dust particle and
the proton at Zd = 10, Γ = 0.1 and κ = 0.5. Blue line:
micropotential (32); red line: Debye-like potential (35); black
line: formula (33).

In Figure 10 a comparison is made between expressions (32), (33) and (35) for the proton-grain interaction
at Zd = 10, Γ = e2/(RkBT ) = 0.1 and κ = kDR = 0.5. It is seen that micropotential (32) lies high above
Debye-like potential (35) and the proposed potential (33) that has a gap, say δ = Φab(r → 0) − ϕab(r → 0), at
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the origin, r → 0, caused by engaging of the plasma electrodynamics. It appears from expression (33) and (34)
that the gap δ has an exact value of

δ = −kDQab [1− kDRabEi(kDRab) exp(kDRab)] . (36)

It is worth noting that the onset of the gap is a straightforward consequence of boundary condition (25) and has
an immediate influence on the the dust grain charge in a plasma which will be in focus of a forthcoming paper.

4 Chemical model of dusty plasmas

As it is clear from the consideration above the only tool at hand to analytically calculate the electric charge
is the orbital motion limited approximation. The vital question posed in this section is whether the power of
thermodynamics can be employed to determine the electric charge of dust particles in a plasma.

To give a positive answer to this question consider a situation that is quite different from those treated in the
previous sections in that the dust is assumed to be an ordinary plasma component. The original idea is to use
the chemical model of a plasma which is commonly applied to evaluate the composition of a partially ionized
plasma. It is important for the chemical picture to properly define each particle specie which is done hereinafter as
follows. Assume that the plasma medium of volume V contains Np number of protons, Ne number of electrons
and Nd number of dust particles, then, the free energy F of the system is written as [46, 47]:

F

kBT
= Ne

[
ln

(
Neλ

3
e

V

)
− 1

]
+Np

[
ln

(
Npλ

3
p

V

)
− 1

]
+Nd

[
ln

(
Ndλ

3
d

V Σ

)
− 1

]
− kBTV

12r3D
, (37)

where λa = (2π�2/makBT )
1/2 denotes the thermal wavelength of particles of specie a and r2D = kBT/4π(ne+

np + ndZ
2
d)e

2 designates the Debye screening radius with np, ne, nd being the corresponding number densities.
Note that the first three terms in (37) correspond to an ideal system of noninteracting particles whereas the last
term comes from the plasma contribution in the simplest Debye approximation.

0.02 0.04 0.06 0.08 0.10
0

100

200

300

400

500

600

700

Z
d

Γ

Fig. 11 Electric charge Zd of the dust grain as a function of
the coupling parameter Γ at rs = 200. Blue line: κ = 10−5;
red line: κ = 10−4; black line: κ = 10−3.
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Fig. 12 Electric charge Zd of the dust grain as a function of
the density parameter rs at Γ = 0.01. Blue line: κ = 10−5;
red line: κ = 10−4; black line: κ = 10−3.

The only factor yet left undefined is the partition function Σ which can be handled as follows. A dust grain is
a solid state body which is a potential well for electrons characterized by the so-called work function A. If each
dust particle have absorbed Zd number of electrons, then, the partition function is obtained as

Σ = exp(ZdA). (38)

The last restriction to be imposed is an overall neutrality of the system invoked by the relation

ne + Zdnd = np. (39)
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From the practical point of view evaluation of the dust grain charge is entirely based on the minimization of
free energy (37) under the condition that the number density of the protons np is kept constant. Numerical results
are presented in Figures 11 and 12 to show the dependence of the dust grain charge on the coupling parameter
Γ = e2/(akBT ) and the density parameter rs = amee

2/� where a = (3/4πnp)
1/3. It is seen that when the

parameter κ = nd/np grows the charge number of the dust grains Zd decreases because the number density of
dust particles effectively increases. It is rather self explanatory that the electric charge of dust particles vanishes
when the coupling parameter grows since the decrease in plasma temperature results in lower plasma particles
mobilities. At the same time decreasing the proton number density or increasing the density parameter give rise
to the growth of the dust particle charge. Quite an analogous behavior was established in [48].

Of course, the approach developed above has its own merits and demerits. One of the apparent advantages
of the chemical model is that it is absolutely insensitive to the details such as, for example, absorption cross
sections of plasma particles and, on the other hand, success strongly depends on the choice of the free energy.
Further improvement can readily be achieved by developing a self-consistent model to correctly take into account
interparticle interactions as it could be done in the pair correlation approximation [49].

5 Conclusions

This paper has been solely concentrated on the problem of the calculation of the electric charge of dust particles
immersed in a buffer hydrogen plasma.

Consideration has started from the orbital motion limited approximation, which implies the collisionless bal-
listic trajectories of plasma particles in an electric field of the charged dust grain. It has been demonstrated that
the polarization effects lead to a substantial modification of the calculation technique to find that the proton and
electron fluxes on the grain surface strongly depend on its charge and the coupling parameter of the buffer plasma.
In particular, the proton flux grows linearly with increasing the grain charge and the coupling parameter, which is
explained by their mutual attraction. The opposite pattern is observed for the the electron flux since the electrons
are repelled by the negatively charged dust particle. The influence of polarization effects on the grain charge
has been studied to show that it increases when the coupling parameter grows which is prescribed to the studied
behavior of the electron and proton fluxes on the dust grain surface.

The plasma electrodynamics has provided an important insight that the charge of the dust grain is determined
by the normal component of the dielectric displacement vector near the grain surface. A simple model has been
put forward to derive the screened interaction potential between the constituents of the dusty plasma to discover
that a gap at the grain surface has occurred in comparison with the microscopic potential which must have a
significant impact on the grain charge.

Finally, the chemical model of dusty plasmas has been developed for the first time ever as an efficient analogue
of the chemical picture of a partially ionized plasmas. The free energy of the system has taken into account the
plasma contribution in the simplest form of the Debye approximation and its minimization together with the total
system neutrality has allowed us to evaluate the electric charge of dust particles treated as a distinct specie.

There are so many possible ways to improve the approaches proposed above. For example, one can develop a
more sophisticated theory of a charged double layer at the solid surface to mimic generation of a work function.
Another problem is to create a consistent theory for the grain charge in the framework of plasma electrodynamics.
And, of course, the chemical model of dusty plasmas can be significantly modified to take into account various
effects that may play a tangible role.
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