

(www.anm2015.com)

ANM Abstracts

Abstracts in session ANM for Plenary, Invited, Oral and Poster presentations

Contents

Page	Abstract	Title			
	No				
1	102	Microstructural Properties of ZnO Powder Nanostructures Prepared by			
		Mechanical Alloying			
2	106	Spin transport in poly(ferrocenylsilane) and the related polymers			
3	107	Hydrogenation of silicene and its thermal stability			
4	108	Characterization of a Water-In-Oil-In-Water Multiple Emulsion Integrating			
		Biomimetic Aqueous-Core Lipid Nanoballoons Housing Protein Entities			
5	109	Nanofiber materials for visible light driven simultaneous generation of			
		and O2(1 Dg)			
6	114	Controlled Freezing and Freeze-drying for Nanosized Oxide Ceramic			
7	116	Barium Titanate Nanoparticles - Micro-Raman Phase Transition Probe			
8	124	Temperature Coefficient of Resistance of carbon nanotube/			
		Poly(Nisopropylacrylamide) composites for infrared and thermal sensing			
9	127	High responsivity photodetector based on PbS QDs/Si heterostructure			
10	128	Photoluminescence studies in Tm implanted Al _x Ga _{1-x} N layers			
11	130	Gold and Palladium Gold Catalysts Used for Nitrate Reduction from Water			
12	131	Laser ablation in liquids: a simple approach to produce nanophosphors			
13	136	Synthesis and characterization of Na(Y/Gd)F4 upconverting nanoparti			
		for multimodal imaging			
14	138	Magnetic Behavioural Change of Silane Exposed Graphene Nanoflakes			
15	139	Microbial toxicity test of functionalized iron-oxide nanoparticles for			
		possible use in soil aquifer treatment system			
16	140	Polymorphism of ciclopirox-olamine in mucoadhesive buccal films			
17	143	Characteristics of ultrafine/nanocrystalline Ti-20Nb-5Ta alloy processed by			
		severe plastic deformation			
18	144	Crystallization Processes of Proteins and Small Organic Molecules			
19	145	Immobilization in LBL Films of Chlorophyll Encapsulated in Liposomes –			

76	294	Towards white light in nitrides through defect engineering			
77	296	Nanocomposites Based on Thermosetting Polyurethane and Multi-Walled Carbonanotubes with Surface Functionalization			
78	298	Experimental set-up for generating nano-objects with stable concentrations used to validate measuring apparatus in real time			
79	301	Water purification by chitosan-hydroxy apatite nano hybrid system			
80	302	Vascular drug delivery system based on nano noisome			
81	303	Structural characterization of Sr doped LaFeO₃ thin films prepared by pulsed electron deposition method			
82	314	Development of a new TBC system for more efficient gas turbine engine application			
83	318	Investigating the effect of nanofiller geometry on the elastic constants of metal-based nanocomposites: A molecular dynamics study			
84	326	Magnetically-driven release of doxorubicin from hydroxyapatite nanoparticles			
85	327	Covalent Antibody Immobilization on the Electrospun Nanofiber for High Sensitive Biosensor Applications			
86	338	Determination of dustiness of nanomaterials with the rotating drum test method			
87	345	A candidate for a multiple ReRAM using the Au/TiO2/Ti thin film			
88	357	Intraband optical activity of a semiconductor nanocrystal			
89	358	Ligands Effect in High Photoluminescence of CuInS ₂ /ZnS quantum dots synthesis			
90	359	Influence of Polyaniline as Coating on the NaNbO3/PVDF Composite Properties			
91	360	SnO2 Films-Based Varistor Prepared by Electrophoretic Deposition			
92	370	An original route to target delivery via core-shell modification of SPIONs			
93	377	Microwave solvothermal synthesis of nanocrystal Cu2ZnSnS4 (CZTS) materials for photovoltaic applications			
94	387	Influence of ligands on the electronic states of assembled CdSe nanocrystal hybrid films			
95	389	One Dimensional Nanostructures Polymer Composite Electrodes and Photoactive Layers for Efficient, Stable and Flexible Organic Photovoltaic Devices			
96	395	A model of molecular aggregation in semiconductor nanocrystals- tetrapyrrole molecules complexes			
97	398	Electronic structure of CsPbI3/RbPbI3 cation ordered superlattices			
98	402	Gigantic enhancement in broadband photo detection of electrospun CoTiO3 nanosensors			
99	406	Magnetocaloric effect in La0.7Sr0.3MnO3 nanohole arrays			
100	408	Nanocrystalline Cu2ZnSnSe4 Thin Films for Solar Cells Applications: Microdiffraction and Structural Characterization			
101	409	Optical, Morphological and Strultural Properties of Self-Organized TiO ₂ Nanotubes for Sensor Applications			
102	420	In-Situ Analysis of the Reduction of Supported Pt Catalysts Using UV-Vis- NIR Spectroscopy			
103	425	Abinitio vibrational properties of the carbon-modifiedNowotnyphase Ti5Si3			
		Conductive and flexible materials containing graphene-DNA hybrids for			

Electronic structure of CsPbI₃/RbPbI₃ cation ordered superlattices

Abdykadyrov Baurzhan¹ and Takibaev N. Zh. ¹

¹Physics department, al-Farabi Kazakh National University, Kazakhstan, abkxat@gmail.com

ANM-nanomaterial-Poster

INTRODUCTION

Halide perovskites have recently emerged as promising materials for low-cost, high-efficiency solar cells[1]. Many studies have followed with the aim of both improving the performance of these materials in photovoltaic cells and of understanding which physical parameters may determine the efficiencies[2]. Good understanding of the structural and electronic properties is very important to predict new related functional materials.

THEORETICAL STUDY

We have performed first principles density functional calculations of $CsRbPb_2I_6$ halyde perovskites with two different methods. The first approach is density functional calculations with the PBE-GGA approximation implemented in VASP [3]. The momentum space integrations were performed using a 5 × 4 × 4 Γ -centered Monkhorst-Pack k-mesh [4]. For the various symmetries examined, the lattice constants and internal coordinates were fully optimized until the residual Hellmann-Feyman forces became smaller than 10^{-6} eV/Å. Secondly, we have applied the hybrid density functional calculation of CRYSTAL09 [4] to study the electronic structure, especially to get the band gap energy.

RESULTS AND DISCUSSION

Group theory analysis shows that $a \bar{a} c^+$ octahedral tilting stabilizes the $Pmc2_1$ orthorhombic phase in the superlattice shown in Fig. 1(a). The large pink sphere represents a Cs ion and the small green sphere represents a Rb ions. PbI₆ octahedrals linked in c axis and have significant distortion and tilting. the The unit cell contains four formula unit for perovskite (20 atoms), and $Pmc2_1$ space group is actually a polar space group.

Figure 1. Structure of $CsRbPb_2I_6$ superlattices in [001] and [111] directions

We show in table 1. structural and electreonic properties of parent structures RbPbI₃, CsPbI₃ and superlattices in [100], [110], [111] directions within PBE and PBE0 approximation. In [100] direction the band gap value is 1.892 Ev and 2.68 eV respectively. In [110] direction the band gap value is 1.871 Ev and 2.70 eV respectively. Electronic structure of superlattices in [111] direction shows band gap value is 1.885 Ev and 2.63 eV respectively.

Structure	Volume	Total E	E_{g}	E_{g}
	(\mathring{A}^3)	(eV)	PBE	PBE0
			(eV)	(eV)
RbPbI ₃	478.83	-28.202	1.922	2.86
CsPbI ₃	503.13	-28.358	1.822	2.57
CsRbPb ₂ I ₆	490.86	-28.271	1.892	2.68
[001]				
CsRbPb ₂ I ₆	491.46	-28.266	1.871	2.70
[110]				
CsRbPb ₂ I ₆	491.28	-28.269	1.885	2.63
[111]				

Table. 1 Structural and electronic properties of RbPb I_3 , CsRb I_3 and CsRbPb $_2I_6$.

CONCLUSION

We have examined the structural and electronic properties of ferroelectric compound CsRbPb₂I₆. We find the ground states of structures of the [100] and [111] ordered superlattices are polar. In all three directions the band gap value of PBE is underestimates ~ 70 % compared to that PBE0 hybrid functional calculation.

REFERENCES

- 1. Wan-Jian Yin, Ji-Hui Yang, Joongoo Kang, Yanfa Yan, Su-Huai Wei, J. Matter. Chem A (2014)
- 2. Ball, J. M., Lee, M. M., Hey, A., Snaith, H. J., Energy Env. Sci., 6 (2013)
- 3. G Kresse, J Furthmuller, VASP-Guide (2003)
- 4. H.J. Monkhorst, J.D.Pack, Phys. Rev. B, 13 (1976)
- 5. R. Dovesi, V.R. Saunders, CRYSTAL09 User's Manual (2013)

