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e-approximation of the equations of heat convection for the
Kelvin-Voight fluids

Undasyn Utegenovich Abylkairov and Khonatbek Khompysh
Al-Farabi Kazakh National University, 050038, Almaty, Kazakhstan

Abstract. We study one an € - approximation for the initial-boundary value problem with free surface condition for the heat
convection for Kelvin-Voight fluids in bounded domain Q C R™, m = 2,3 with a smooth boundary.The theorems of existence
and uniqueness of smooth solutions of €— regularization initial value problem in Sobolev spaces are proved. The estimate for
rate of convergence of solution for € — 0 is obtained.
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INTRODUCTION. STATEMENT OF THE PROBLEM

In the work [1], the unique solvability of the following initial-boundary value problem for the system of the nonlinear
partial differential equations describing motion of the linear viscoelastic incompressible Kelvin-Voight fluids has been
investigated:

Vi — VAV + vy, + gradp — XAV, = f(x,1)+g76, 7= (0,0,1), (1)
divv =0, 2)

0, —AAO + (V- V)0 = g(x,1), 3)

V=0 = Vo (x), 0],— = 60 (x), )

Vnlgg =0, (roti x n)[3 =0, 850 =0, &)

where v, is normal component of the vector-function (velocity of a fluid) ¥(x,7) on dQ, p(x,?) is pressure, 0(x,t) is
temperature, f(x,t) is denoted the external forces, ¢(x,t) is density of the external heat flow, v, A and x are some
positive physical coefficients.

Thus, the system (1)-(5) is not evolutionary, so that the direct application of method of fractional steps is difficult
[2]. To overcome these difficulties due to the incompressibility condition (2), in the works [3—5] some €— approxi-
mations for system of Navier-Stokes equations have been proposed, at which the incompressibility condition (2) is
approximated by some equations with a small parameters € > 0. Thus, the system of the Cauchy-Kowalewskii type is
obtained as a result.

By arguing [6, 7], we approximate equations (1) and (3) by following equations:

1 - S o
Vi — VAV vy — X AV; + Eﬁgdivﬁs —Vp=f(x1)+gy0% 7=(0,0,1), (6)

1
0f —AAO% + (V- V) 0% + Eegdivffg =q(x,1), (7)
and equation (2) is approximated by the equation
ep© +divi® =0, p*(x,0) = po(x). (8)

The system of equations (6)-(8) after the transformations
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reduces to the system

1 1 N L )
Ly (V¢,0%) =y — VAV + vy — XAV + 2vgdlvv - fgraddlva) = f(x,1)+g70%, @F =, )

Ly (0%,%°) = 6F — AAO% + (V° )98+ Ofdivi® = g(x,1), (10)

where we denoted Vpy + f(x,f) again by f(x,¢) for simplicity.
We study the system of equations (9)-(10) in Q7 with initial conditions

VE\::O = o (x), E)£|t=0 =0, 98\::0 = 6 (x), (11
and free surface conditions [8]
Vv, = Ve 'I’lIaQ = 07 (I‘Otl_/’e X l’l)|ag = O, 6)5‘39 = 07 (rot(f)e X i’l)|aQ = O, 98|BQ =0. (12)

An £— approximation for the system (1)-(2) were investigated in [9] where the equation (2) has been approximated
by ep® +divi® = 0.
We use the following notation of functional spaces and their norms studied in [7]:

HY Q) =WF(Q), k=1,2,...,
H'(Q) E{MEHI(Q)Z Un|yq =0},
{u )€ H?(Q ﬁHl(Q): (rotii x it)| 3o =0},
= {u(x) € H} (Q): divii(x) =0, x€ Q},

where Wy (Q) and L, (Q) are classical Sobolev spaces.
We also apply (see [6]) the Poincare’s inequality

o < Co(@)Vila,  YWEHN(Q),  (orH,(Q)), (13)
Ladyzhenskaya’s inequality
» O EA AT 3
Wlaq < VAITiq- Id3q,  QCR, (14)
and the following inequalities
1
2 . 2\ 2
QI < (Jlrow]>+ i) < (@)l v € HY (), (15)
CQ) 20y < I1AV] < C' (@[Tl 12), VW € Hy (). (16)

UNIQUE EXISTENCE AND CONVERGENCE OF THE SOLUTION OF (9)-(12)
The following theorem is the main theorem of the work.

Theorem 1. Let be ¥y (x) € J2(Q), 60 (x) € WL(Q), F(x,1), f (x,1) € L (Or).
Then, the initial-boundary value problem (9)-(12) for V& > 0 has a unique solution (V¢, @¢, 0¢) such that

¥, @ € W (0,T;H2), 65 € W) (0,T; W) N L. (o,T;vf/;)
and the following estimate holds:

i 2 2 2
||V (x’t)HWOL(O,T;HZ(Q)) + HBEHLOO(O,T;V[%(Q)) — quaddlv 8||Lm 0T (@) T ”6’8”2,QT
(17)

1 . ae 2
+ || SH =+ ? ||qraddlva)£HLOO(OI;LZ(Q)) S C() < oo,

Ly(0,T W Q) NWL(Q)
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Moreover, the strong solution (V¢,®%, 0°) of (9)-(12) converges for € — 0 to the smooth solution
(¥(x,1),Vp(x,1),0(x,1)) of the initial-boundary value problem (1)-(5) such that

FeWL(0,T:2), VpeL.(0,T;Ly), 6€W, (0,T;W2)N L. (o,T;vf?g) ,
and the following estimate holds

+||VP||LmouQ )+ 11611, +||9|| logn = C

=112
7, o 7y + 1612 : orwanitey <

(0.T:Ww(Q))
Here C; denotes the constants depending only on initials of the problem and independent on the small parameter €.

It is well known [4, 5], to prove the Theorem 1 it suffices to prove a priori estimate (17), then the solution
(V¢, @%, 6%) of the problem (9)-(12) will be constructed by the Faedo-Galerkin method and the convergence of the
solution (V¢, ®¢, 6%) of the perturbed problem (9)-(12) for € — 0 to the smooth solution (V¥,Vp, ) of the initial-
boundary value problem (1)-(5) follows from well known compactness theorems [4]-[5].

Proof of the estimate (17). In order to prove (17), at first we multiply the equation (10) by 6% and integrate over Q.
After integrating by parts and using Holder’s, Cauchy’s inequalities and the Gronwall’s lemma, we get the estimate

2 2 _
10°N L 0.7:2a0)) + 165 I, 07:200)) < €1 (A ! ||‘]||%,QT7 ”60“%,9) : (13)

1 ~ . . .
We multiply the equation (9) by V¢, AV, graddivcog, the equation (10) by AB%, 6f and a priori differentiated by

t equation (9) by ¥, AV¥, and integrate the obtained results over Q. Then using the following Green’s formulas (see
[6]), which are valid for all functions ¥, @ € H* (Q), k = 1,2, satisfying the boundary condition (5)

(—AV, @), o = — (grad divV, @), o + (rot?¥, ),
f/ divv- @,dS + (divv,divd), o + / O (rot x 7i) dS + (rotV, rot®), ¢ (19)
aQ aQ

= (div¥,divd),  + (rot¥, rot®), ¢ ,

(grad divy,A®), o = (grad divV, grad divd), / grad divV (rot® x 7i) dS
i 20)
— (rot graddivy, rot@), o = (grad divv, grad div®), q,
we arrive at the following integral relations:
1d L. .
52 7130+ 2 (1ivie I o+ lIrori® 5. ) + < lldiva® 3.
2dt £ ’ Q1
v (lldivie 5o+ ror(3g) = (F+750°5) .
(IICllV V(5.0 + [lror (15 o + 1 [|AV E\lzsﬁ ~ || graddive*|3, Q) +V[AF )5 )

= B((¥,7),A%),q — (f+yg68,Av )m,
(7% — ¥t — va¥* - F - g76° graddivar

1 (23)
+= (B(*, V), graddived®),, g ,

o | =

1 . g2
2 |graddivd®(|5 o =

€
Zdt ||6£||29+}/HA6£”29 ( (‘78798)+Qu A98)2,§27 Vt € (O7T)7 (24)
Ad € €2 €
2dt ||9 ||2£2 ||9t HZ.Q: (B(V 79 )+q76 )2!27 Vi € (07T)7 (25)
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2dt (H

(26)
2 e o D
(Hdlvv8||2 o+ || roti#|5. Q) = (f, +g76f, vf) - (vav‘c' + Evf’dlvv"3 vf)

St (1aviF i+ Iront 3 ) + £ v

1d ~ . 1
Edf <||leV8|2 Q + ||1‘0tv,£||29 +x ||Avf||29 + E ||gl'addlvv£||2 Q> +vVv HAVSHZQ
(27)
- d
- (ft + g76f, A‘_"f) - (atB(‘_;g7 ‘78)7 A‘_;f) )
where

1
(B(vf,e‘?),w):/((ve-V) 98+298divv€) wdx
Q

and we denote by (-,-) the inner product in L, (Q).
Now, we estimate the right-hand side of (21) by Holder’s inequality, then using (15) and (18), we get the estimate

- 2 1
HVSHLW 0.T:L,(Q) T HV8||2 or T ||d1V HL (0.T:L,(Q) = G (V 17'Q7||f||2,QTaC17Hv0H( )>- (28)

The terms on the right-hand side of (22) can be estimated by Holder’s inequality, Poincare’s inequality and the
inequality (16). In consequence, using the estimates (18), (28), we obtain

1 g2 2 2
HVSHL(,C 0.1:1,(Q) T Hv8||2 Or E lgraddivd® (|7 o 7.,(0)) < C3 (Qa 17115 0, ,C3, [[vol|" )) . (29)
Applying the same method to (24), we can easily get the following estimate
2 2
105117 0.7:200)) T 11A0°]15,0, < Ca < oo (30)

Next, we estimate the integrals on the right-hand side in (25) by Holder’s, Young’s, Poincare’s inequalities and
(18)-(12). Then using the Granwoll’s lemma, we have

2
16£ 117 (0.1, ) + 16F 113 0, < Cs5 < oo. 31

Applying the Holder’s inequality, Ladyzhenskaya inequality (14), and the estimates (18)-(31) to right-hand side of
(26), we get the estimate

viE |2
19, VIEHLN(O.T;LZ + ||VV€H2 or T Hdlvv'9||L°° (0.1:15(2)) < C6 < oo (32)

Analogical way as above, we get from (27) the estimate

e 1 2 2 2
15 5% o zaten) + [Pl 0, + 5 lgraddivi® |7 o 7y < Cr (IF il gy -0l ®) . 33)
where we used the inequality
o 2 1 =1 =2
17,0l < s (v 2 L IR 1f (5, 0))

Finally, estimating the terms on right-hand side of (24) by Holder’s, Young’s inequalities, and the already obtained
estimates, we obtain

1 g2 1 - .
5 llgraddive® |5 < Co (7" v .15l @ I60ll.[1£. il g, ) (34)

Estimates (18), (28)-(34) imply the estimate (17).
In numerical analysis an estimate of convergence rate is very important. For the rate of convergence the following
theorem holds.

Theorem 2. Let conditions of Theorem 1 are fulfilled. Then for the rate of convergence the following estimate holds

19 (1) =€ (x,0)]] . (o1 (@) T 116 (x,2) = 0% (x,1)l._0.7:1.(0))

N . 1
+V(x,1) = v (XJ)”Lz(()j;Hl(Q)) +116 (x,1) — 6° (x7t)||L2(07T;W21(Q)) < Cog2.

Analogical way as in [9], one can prove the Theorem 2.
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