

On estimates of solutions of the linear stationary problem of magnetohydrodynamics problem in Sobolev spaces

Khonatbek Khompysh and Sharypkhan Sakhaevich Sakhaev

Citation: AIP Conference Proceedings **1676**, 020033 (2015); doi: 10.1063/1.4930459 View online: http://dx.doi.org/10.1063/1.4930459 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1676?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Lower bounds on blow up solutions of the three-dimensional Navier–Stokes equations in homogeneous Sobolev spaces J. Math. Phys. **53**, 115618 (2012); 10.1063/1.4762841

The eigenfrequency spectrum of linear magnetohydrodynamic perturbations in stationary equilibria: A variational principle Phys. Plasmas **17**, 112106 (2010); 10.1063/1.3505095

The brachistochrone problem in a stationary space-time J. Math. Phys. **32**, 3148 (1991); 10.1063/1.529472

Stationary chaotic states in linear magnetohydrodynamic generators Appl. Phys. Lett. **52**, 1950 (1988); 10.1063/1.99586

Exact Solutions to a Class of Linearized Magnetohydrodynamic Flow Problems Phys. Fluids **5**, 1416 (1962); 10.1063/1.1706539

On estimates of solutions of the linear stationary problem of magnetohydrodynamics problem in Sobolev spaces

Khonatbek Khompysh and Sharypkhan Sakhaevich Sakhaev

Al-Farabi Kazakh National University, 050038, Almaty, Kazakhstan

Abstract. In this paper, we get estimates in Sobolev spaces for solutions of stationary linear problem arising in magnetohydrodynamics. The problem is studied in the multiply connected domains.

Keywords: Magnetohydrodynamics, L_p -estimate, Sobolev spaces, Multi-connected domains. PACS: 52.75.Fk

STATEMENT OF THE PROBLEM

Let Ω_1 , bounded domain in \mathbb{R}^3 with a smooth boundary S_1 , be strictly interior subdomain Ω from abroad S and let $\Omega_2 = \Omega \setminus \Omega_1$. In this paper, we consider the linear problem that is the system of Maxwell's equations with excluded bias current $rot \vec{H}(x) - \sigma \vec{F}(x) - \vec{i}(x)$

$$div\vec{H}(x) - \sigma E(x) = j(x),$$

$$div\vec{H}(x) = 0,$$

$$rot\vec{E}(x) = 0$$
(1)

at a given $\vec{j}(x)$, $x \in \Omega_1$. Thus, $rot \vec{H} = 0$, $div \vec{H} = 0$, $x \in \Omega_2$ and fair

$$[H_n] = 0, \ [\vec{H}_{\tau}] = 0, \ x \in S_1$$

$$H_n = 0, \ x \in S.$$
(2)

Under [u] jump of the function u(x), $x \in \Omega_1 \bigcup \Omega_2$ on the surface $S_1 : [u] = u^1(x) - u^2(x)$, $u^{(i)} = u(x)|_{x \in \Omega_i}$, $H_n = \vec{H} \cdot \vec{n}$ and $\vec{H}_\tau = \vec{H} - \vec{n}H_n$ are normal and tangential components of the vector $\vec{H}(x)$ on S and S_1 , μ is a piecewise constant function, equal μ_i in Ω_i , $i = 1, 2, \mu_i > 0$.

Problem (1)-(2) arises in the study of problems of magneto hydrodynamics, [1–3] in which Ω_1 is an area, filled with a viscous incompressible electrically conducting fluid, Ω_2 is a vacuum surrounding, *S* is a perfectly conducting surface, $\vec{H}(x)$ is the magnetic field strength. Relations (1) represent a linearized stationary equations of Maxwell (with exceptional bias currents) and (2) represent the standard conditions at the boundary of the magnetic field. We assume the field Ω_1 and Ω_2 simply connected. Then equations $rot\vec{H} = 0$, $div\vec{H} = 0$ in Ω_2 entails $\vec{H}^2(x) = \nabla \varphi(x)$, where $\varphi(x)$ is a solution of the following Neumann problem

$$\nabla^{2} \varphi(x) = 0, \ x \in \Omega_{2}, \ \left. \frac{\partial \varphi}{\partial n} \right|_{x \in S} = 0,$$

$$\mu_{2} \left. \frac{\partial \varphi}{\partial n} \right|_{x \in S_{1}} = \mu_{1} \left. \vec{H}^{(1)} \vec{n} \right|_{x \in S_{1}},$$
(3)

Advancements in Mathematical Sciences AIP Conf. Proc. 1676, 020033-1–020033-5; doi: 10.1063/1.4930459 © 2015 AIP Publishing LLC 978-0-7354-1323-8/\$30.00 and problem (1)-(2) can be written as

$$\begin{split} \frac{1}{\sigma} rotrot \vec{H}^{(1)}(x) &= \vec{g}(x), \quad div \vec{H}^{(1)}(x) = 0, \\ \vec{H}^{(2)}(x) &= \nabla \varphi(x), \\ \nabla^2 \varphi(x) &= 0, \quad x \in \Omega_2, \quad \frac{\partial \varphi}{\partial n}\Big|_{x \in S} = 0, \\ \mu_2 \frac{\partial \varphi}{\partial n} - \mu_1 \vec{H}^{(1)} \vec{n}\Big|_{x \in S_1} = 0, \\ \vec{H}_{\tau}^{(1)} &= \nabla_{\tau} \varphi(x), \quad x \in S_1, \end{split}$$
(4)

where $\vec{g}(x) = \frac{1}{\sigma} rot \vec{j}(x)$.

Hence, $\vec{H}^2(x)$ is completely determined by $\vec{H}^1 \cdot \vec{n}\Big|_{x \in S_1}$. Conditions on the surface S_1 for the vector \vec{H} can be briefly written as $\vec{H}_{\tau}(x) = B(\vec{H} \cdot \vec{n})$, where *B*-nonlocal linear operator. We use annotation of functional spaces and norms accepting in [4, 5].

Theorem 1. Suppose that $\vec{g}(x) \in L_p(\Omega_1)$ and the conditions

$$\nabla \cdot \vec{g} = 0, \ \nabla \cdot \vec{H}(x) = 0, \ x \in \Omega_1,$$

$$\vec{H}_{\tau}^{(1)} = B(\vec{H}^{(1)} \cdot \vec{n})$$
(5)

hold. Then, problem (1)-(2) has a unique solution $\vec{H}^{(1)} \in W_p^2(\Omega_1)$ and it satisfies

$$||\vec{H}^{(1)}||_{w_p^2(\Omega_1)} \le c||\vec{g}||_{L_{p(\Omega_1)}}.$$
(6)

Recall that $W_p^r(\Omega_1), r = [r] + \lambda, 0 < \lambda < 1$ is the space with the norm

$$||\upsilon||_{w_{p}^{r}(\Omega_{1})} \leq \left(\sum_{0 \leq j \leq [r]} ||D^{j}\upsilon||_{L_{p}(\Omega_{1})}^{p} + \sum_{|j|=[r]} \int_{\Omega_{1}} \int_{\Omega_{1}} |D^{j}\upsilon(x) - D^{j}\upsilon(y)|^{p} \frac{dxdy}{|x-y|^{3} + p\lambda}\right)^{1/p}.$$

It is easy to check that (6) implies the same estimate for $\vec{H}^2(x)$. Indeed, the solution of problem (3) satisfies

$$||\nabla \boldsymbol{\varphi}||_{w_p^2(\Omega_2)} \le c||\vec{H}^{(1)} \cdot \vec{n}||_{w_p^{1-1/p}(S_1)} \le c||\vec{H}^{(1)}||_{w_p^2(\Omega_1)}.$$
(7)

Furthermore, since

$$\mu_2 \int_{\Omega_2} \nabla \varphi \nabla \eta \, dx = -\int_{S} \mu_1 \vec{H}^{(1)} \vec{n} \eta \, ds = -\mu_1 \int_{\Omega_1} \vec{H}^{(1)} \vec{n} \eta \, ds = -\mu_1 \int_{\Omega_1} \vec{H}^{(1)} \nabla \eta \, dx$$

for any $\eta \in W_p^1(\Omega)$, we obtain

$$||\nabla \varphi||_{L_{p}(\Omega_{2})} \le c||\vec{H}^{(1)}||_{L_{p}(\Omega_{1})}.$$
(8)

From (8)

$$||\vec{H}^{(2)}||_{w_p^2(\Omega_2)} \le c ||\vec{H}^{(1)}||_{w_p^2(\Omega_1)}.$$
(9)

We also have $\vec{H}^2 = \nabla \phi$, where $\phi(x)$ is the weak solution of the Neumann problem

$$\nabla^2 \varphi = 0, \ x \in \Omega_2,$$

$$\frac{\partial \varphi}{\partial n}\Big|_{S} = 0, \ \mu_2 \frac{\partial \varphi}{\partial n} - \mu_1 \vec{H}^{(1)} \vec{n}\Big|_{S_1} = 0,$$
(10)

i.e., the function $\varphi(x)$ satisfies the following integral identity, for all test function $\eta \in J_2^1(\Omega_1) \cap J_2^1(\Omega_2)$, satisfying boundary conditions (10)

$$\mu_2 \int_{\Omega_2} \nabla \phi \nabla \eta \, dx + \int_{\Omega_1} \mu_1 H^{(1)} \cdot \nabla \eta \, dx = 0.$$
⁽¹¹⁾

Solenoidal condition (for example $\nabla \vec{g} = 0$) understood in the usual meaning as $\int_{\Omega_1} \vec{g} \cdot \nabla \eta dx = 0$ for any smooth η

vanishing on S_1 .

Condition (5) means for p > 3/2 as equality trace function $\vec{H}(x)$ and on $S : \vec{H}_{\tau}^1 = \nabla_{\tau} \varphi = \vec{H}_{\tau}^2 \in W_p^{2-3/p}(S_1)$. At p < 3/2 it makes no sense, and if p = 3/2 understood as an integral limitations

$$\int_{\Omega_2} \left(\vec{k} - \vec{H}^{(2)} - \vec{n} \cdot \vec{n}^* \left(\vec{k} - \vec{H}^{(2)} \right) \rho^{-1}(x) \right) dx,$$

where $\rho(x)$ is a smooth function, equal $dist(x, S_1)$ around S_1 , \vec{n}^* is a smooth extension of the normal \vec{n} inside Ω_2 , $\vec{k} \in W_{3/2}^{2/3}(\Omega_2)$ is continuation of the vector field $\vec{H}^1 \in W_{3/2}^{2/3}(\Omega_1)$ with preservation of class.

Remark 1. For applications to the magneto hydrodynamics most interesting case p > 3/2.

PROBLEM (1)-(2) IN MULTIPLY CONNECTED DOMAINS Ω_1 AND Ω

We turn to a discussion of problem (1)-(2). In the case of many areas of connectedness convenient consider it in the form $rot\vec{E} = 0 \quad div\vec{H}(x) = 0 \quad x \in \Omega_1 | | \Omega_2$

$$rot\vec{H} = 0, \ div\vec{H}(x) = 0, \ x \in \Omega_1,$$

$$rot\vec{H}(x) = 0, \ div\vec{E} = 0, \ x \in \Omega_2,$$

$$[\mu\vec{H}\cdot\vec{n}] = 0, \ [\vec{H}_{\tau}] = 0, \ [\vec{E}_{\tau}] = 0, \ x \in S_1,$$

(12)

$$\vec{H}\cdot\vec{n}=0, \ \vec{E}_{\tau}=0, \ x\in S$$

where $\vec{j}(x)$ is given and \vec{E} is additional unknown vector field.

It is clear that, \vec{E} easily eliminated from (12) by (1)-(2) with $\vec{g}(x) = \sigma^{-1} rot \vec{j}$. Thus, $\vec{H}^{1}(x)$ satisfies

$$\sigma^{-1} \operatorname{rotrot} \vec{H}^{(1)} = \sigma^{-1} \operatorname{rot} \vec{j}(x), \, \operatorname{div} \vec{H}^{(1)} = 0, \, x \in \Omega_1,$$
(13)

$$\mu_1 \vec{H}^{(1)} \vec{n} = \mu_2 \frac{\partial \varphi}{\partial n}, \ \vec{H}^{(1)}_{\tau} = \nabla_{\tau} \varphi + \vec{u}_{\tau}(x), \ x \in S_1, \ \vec{H}^{(1)}(x) = 0,$$
(14)

where function φ , as above, a solution of (3). In addition, it is easy to check that $\vec{H}(x)$ satisfies the integral identity

$$\int_{\Omega_1} \operatorname{rot} \vec{H} \cdot \operatorname{rot} \psi dx = \int_{\Omega_1} \vec{j}(x) \operatorname{rot} \vec{\psi}(x) dx, \tag{15}$$

where $\vec{\psi}$ is any vector field of the $rot \vec{\psi} \in W_2^1(\Omega_1) \cap W_2^1(\Omega_2)$, $rot \vec{\psi} = 0$ in Ω_2 and continuous tangential component on S_1 . Let \vec{u}_m^* be solenoidal smooth extension \vec{u}_m in the area Ω_1 . In (15) putting $\vec{\psi} = \vec{u}_m^*$, we get

$$-\int_{\Omega_1} rotrot \vec{H}^{(1)} \cdot \vec{u}_m^* dx + \int_{\Omega_1} rot \vec{j}(x) \cdot \vec{u}_m^* dx = \int_{S_1} (rot \vec{H}^{(1)} - \vec{j}) (\vec{n} \times \vec{u}_m) dS,$$

that by (13) and $\vec{H}^2 = \nabla \phi + \vec{u}(x), \ \vec{u}(x) = \sum_{j=1}^{h+h_1} K_j \cdot \vec{u}_j(x)$ is reduced to

$$\mu_2 \sum_{j=1}^{h+h_1} C_{mj} k'_j = -\int\limits_{S_1} \left(\sigma^{-1} \operatorname{rot} \vec{H}^{(1)} - \sigma^{-1} \vec{j} \right) (\vec{n} \times \vec{u}_m) dS, \tag{16}$$

where *h* and h_1 are the first Betti numbers of Ω and Ω_1 .

We show that \vec{H} is reduced to the evaluation $\vec{H}^1(x)$, satisfying (16) and

$$\sum_{j=1}^{h+h_1} k_j C_{mi} = \int_{\Omega_2} \vec{H}^2(x) \cdot \vec{u}_m(x) dx,$$

where $C_{mj} = \int_{\Omega_2} u_m(x) \vec{u}_j(x) dx$ are elements of a positive definite matrix.

Problem (13), (14) differs from (4) only in the presence of heterogeneity in the boundary condition. In the same way as above, we can prove

$$\begin{aligned} ||\vec{H}^{(1)}||_{W_{p}^{2}(\Omega)} &\leq c \left[||rot \vec{j}(x)||_{L_{p}(\Omega_{1})} + ||\vec{u}||_{W_{p}^{2-1/p}(S_{1})} + ||\vec{H}^{(1)}||_{L_{p}(\Omega_{1})} \right] \\ &\leq c \left(||rot \vec{j}||_{L_{p}(\Omega_{1})} + ||\vec{H}^{(1)}||_{L_{p}(\Omega_{1})} \right). \end{aligned}$$

Furthermore, we obtain (9) for $\varphi(x)$ the following inequality

$$||\nabla \varphi||_{W^2_p(\Omega_1)} \le c ||\vec{H}^{(1)}||_{W^2_p(\Omega_1)}$$

and hence

$$||\vec{H}^{(2)}||_{W^2_p(\Omega_1)} \le c||\vec{H}^{(1)}||_{W^2_p(\Omega_1)}$$

Next, we use the interpolation inequality [4]

$$||rot\vec{H}^{(1)}||_{L_p(S_1)} \leq \varepsilon ||D^2\vec{H}^{(1)}||_{L_p(\Omega_1)} + c(\varepsilon)||\vec{H}^{(1)}||_{L_p}.$$

Combining these inequalities, we obtain the estimate

$$\sum_{i=1}^{2} ||\vec{H}^{(i)}||_{W_{p}^{2}(\Omega_{i})} \leq c(\Omega_{i})(||rot\,\vec{j}||_{L_{p}(\Omega_{1})} + ||\vec{j}(x)||_{L_{p}(\Omega_{1})}).$$
(17)

Using (17) from system (1), we get the estimate

$$\sum_{i=1}^{2} ||\vec{E}^{(i)}(x)||_{W_{p}(\Omega_{i})} \leq c[||rot\vec{H}||_{W_{p}^{1}(\Omega_{1})} + ||\vec{j}(x)||_{W_{p}^{1}(\Omega_{1})}] \leq c\left(\sum_{i=1}^{2} ||\vec{H}^{(i)}||_{W_{p}^{1}(\Omega_{1})}\right).$$
(18)

for the vector field $\vec{E}(x)$. Thus, we have proved the following theorem.

Theorem 2. If in (12) vectors $\vec{j}(x)$, rot $\vec{j}(x) \in L_p(\Omega_1)$, then the electric and magnetic fields $\vec{E}(x) \in W_p^1(\Omega_i)$ and $\vec{H}(x) \in W_p^2(\Omega_i)$, i = 1, 2, and the estimates (17) and (18) hold.

ACKNOWLEDGMENTS

This work is partially supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under the grant number 0113RK00943.

REFERENCES

- 1. V. A. Solonnikov, Trudy Mat. Inst. Steklov 59, 174–187 (1960).
- V. A. Solomikov, *Truay Mat. Inst. Stektov 39*, 174–187 (1900).
 O. A. Ladyzhenskaya, and V. A. Solonnikov, *Zap. Nauchn. Sem. LOMI* 38, 46–93 (1973).
 G. Trohmer, *Nonlinear Analysis* 52, 1249–1273 (2003).
 Sh. Sakhaev, and V. A. Solonnikov, *Zap. Nauchn. Sem. POMI* 397, 126–149 (2011).
 Sh. Sakhaev, and V. A. Solonnikov, *Algebra i Analiz* 26, 172–197 (2014).