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Accretion disks around a mass with quadrupole
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We consider the stability properties of circular orbits of test particles mov-
ing around a mass with quadrupole. We show that the quadrupole modifies
drastically the properties of an accretion disk made of such test particles.
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The simplest generalization of the Schwarzschild metric which contains a

quadrupole parameter q is given by

ds2 =

(
1 − 2m

r

)1+q

dt2 −
(

1 − 2m

r

)−q

[(
1 +

m2 sin2 θ

r2 − 2mr

)−q(2+q) (
dr2

1 − 2m
r

+ r2dθ2
)

+ r2 sin2 θdϕ2

]
. (1)

This solution is known as the δ−metric or as the γ−metric and was

first obtained by Zipoy and Voorhees.1 We propose to use the term

quadrupole metric (q−metric) to emphasize the role of the parameter q.

The q−metric is an axially symmetric exact vacuum solution, and reduces

to the Schwarzschild metric for q → 0. It is asymptotically flat with a

central curvature singularity at r = 0 and an outer singularity at r = 2m

which is naked. According to the Geroch definition, the independent mul-

tipole moments are the monopole M0 = m(1 + q) and the quadrupole

M2 = −m3

3 q(1 + q)(2 + q). For more details, see Ref. 2.

As a first approximation, an accretion disk can be considered as a set

of test particles moving along circular orbits around the central mass. In

this case, the geodesic equations on the equatorial plane are equivalent to

the equations for the motion in the effective potential3

V 2
eff (r, q) =

(
1 − 2m

r

)q+1 [
l2

r2

(
1 − 2m

r

)q

+ ε

]
, (2)
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where E and l are constants of motion. The radius and stability properties

of circular orbits are completely determined by the behavior of the effective

potential which, in turn, depends on the behavior of the first and second

radial derivatives. We performed a detailed analysis of the behavior of the

effective potential. The result of this study is summarized in Fig. 1. The

region of stability determines the spatial region where an accretion disk can

exist, and the radius of the last stable circular orbit is interpreted as the

minimum inner radius of the disk.
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Fig. 1. (a) Radius of the last stable circular orbit as a function of the quadrupole.
Below the critical radius rc = m(3 + 2q), no motion is allowed. The outer singularity
rsing = 2m is also plotted. Accretion disks are illustrated for positive q in (b), for
−0.5 > q > 0 in (c) and for q = −0.52 in (d).

We see that for positive values of q the accretion disk is always located

outside the Schwarzschild radius of the last stable circular orbit rSch
lsco = 6m.

For negative values of q, the disk can be completely inside the radius rSch
lsco =

6m. Finally, for values of q close to −0.5, a second inner disk appears in a

region very closed to the outer singularity rsing = 2m.

We conclude that the quadrupole parameter can modify drastically the

geometric structure of accretion disks. Therefore, it should be possible to

determine the value of q from the geometric properties of the disk.
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