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A perfect-fluid spacetime for a slightly deformed mass
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We present approximate exterior and interior solutions of Einstein’s equations
which describe the gravitational field of a static deformed mass distribution.
The deformation of the source is taken into account up to the first order in the
quadrupole.
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To describe the gravitational field of a static axially symmetric mass dis-
tribution in general relativity, it is necessary to consider the multipole mo-
ments of the source. From a physical point of view, one expects that the
quadrupole is the largest contributor and higher multipoles can be neglected
in a first approximation. In this case, to describe the exterior field one can
use, for instance, the exact quadrupole metric (g—metric). 12
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with A = 1 — 2m/r, which has been shown to be the simplest general-
ization of the Schwarzschild metric containing a quadrupole parameter q.
Considering the quadrupole up to the first order only, we obtain

ds* = A(1+qIn A)dt* —r*sin? 0 (1 — ¢ln A) d?

2 d 2
~ 14+ ginA—2¢In (A + 2 sin? 9)} (% T r2d92> . (2)
r
This is an approximate solution of Einstein’s vacuum equations up to the
first order in gq. The total mass of the spacetime turns out to be My =

m(1 + ¢) and the quadrupole moment is My = —(2/3)gm?.
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The interior solution can be generated by using the method proposed
recently in Ref. 3. We obtain
ds? = 2P0 (1 4 24 )dt* — e~ 20 (1 — 2Gu)y)
dr
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where m, ¢, R and k are real constants. This is an interior solution up to
the first order in ¢ for a perfect fluid with density and pressure

p =poll +q(1+1o — 4y — 1)l po = const. (7)
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respectively. In the limiting case ¢ — 0, the metric (3) represents a perfect

p =poll +q(1+vo—4v —71)], p

fluid with constant density po and pressure pg as given in Eq.(8). If m = m,
this particular solution can be matched with the exterior Schwarzschild
metric along a sphere of radius R.

In the general case § # 0, a more detailed analysis must be carried
out in order to match the above approximate interior solution with the
approximate exterior ¢g—metric given in Eq.(2). First, the matching surface
must be established. Then, the matching conditions must be imposed for all
metric components. This would imply a relationship between the exterior
parameters m and ¢ and the interior parameters m, ¢, pg and . This result
will be presented elsewhere.
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