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On the ill-posed problem for the Poisson equation
Kanzharbek B. Imanberdiyev and Karakoz A. Aimenova

Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan

Abstract. In this paper we consider the boundary value problem in two-dimensional rectangular domain for the Poisson
equation. The studied ill-posed boundary value problem is reduced to the optimal control problem. In terms of solutions of
the adjoint boundary value problem, the necessary and sufficient conditions of optimality are established. It is found criterion
for strong solvability of the ill-posed boundary value problem.
Keywords: Poisson equation, Ill-posed problem, Inverse problem, Optimal control
PACS: 02.30.Yy

INTRODUCTION

Recently among the experts on equations of mathematical physics interest in problems that are ill-posed by
J. Hadamard has significantly increased [1]. Due to the ill-posed problems classic works by J. Hadamard [1], A.
N. Tikhonov [2], M. M. Lavrent’ev [3] and many others can be noted, which have drawn the attention of researchers
for ill-posed problems and have made a significant contribution to the development of this important area of mathe-
matics. In this paper we study the ill-posed problem [1–8] for the Poisson equation in two-dimensional rectangular
domain. The correctness criterion of homogeneous mixed Cauchy problem for the Poisson equation in a rectangular
domain was established in the papers of T. Sh. Kalmenov, U. A. Iskakova [6, 7]. In paper [8] the ill-posed problem
for the heat equation is considered. The general regularization method for constructing an approximate solution of
ill-posed problems of mathematical physics was proposed by A. N. Tikhonov [2]. In the book R. Lattes, J. -L. Lions
[4] for regularization of ill-posed boundary value problems the quasiinversion method is proposed. Features and
questions of the regularization of Cauchy problems for abstract differential equations with the operator coefficients
are studied by I. V. Mel’nikova and U. A. Anufrieva [8].

STATEMENT OF THE PROBLEM

We consider the boundary value problem

ytt (x, t)+ yxx(x, t) = f (x, t), (1)

y(0, t) = 0, y(π , t) = 0, (2)

y(x,−1) = ϕ1(x), yt(x,−1) = ϕ2(x), (3)

in the domain Ω = {x, t |0 < x< π ,−1< t < 1} with the additional condition

yt(x,1) ∈ Ug, whereUg is a closed convex set of L2(0,π). (4)

It is assumed that the data in problem (1)–(3) satisfies the following conditions:

f ∈ L2(Ω), ϕ1 ∈ H1
0 (0,π), ϕ2 ∈ L2(0,π). (5)

In the book R. Lattes, J. -L.Lions [4], it is indicated that problem (1)–(3) is ill-posed in the space L2(Ω). In this paper
for solving the ill-posed problem we apply methods of optimal control.
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THE OPTIMIZATION PROBLEM AND ITS REGULARIZATION

For the investigation of problem (1)–(4), we formulate according to it the following optimization problem:

ytt (x, t)+ yxx(x, t) = f (x, t), (6)

y(0, t) = y(π , t) = 0, (7)

yt(x,−1) = ϕ2(x), yt(x,1) = ψ(x), (8)

with functional of optimality:

J (ψ) =

π∫
0

|yx(x,−1)−ϕ ′
1(x)|2dx→ min

ψ∈Ug
. (9)

We note, in optimization problem (6)–(9) the function ψ(x) plays the role of control function. In addition, further
in the work it will be shown that boundary value problem (6)–(8) is well-posed, namely it is uniquely solvable for
any given functions ψ ∈ Ug ⊂ L2(0,π), f ∈ L2(Ω). As it is known from the theory of optimal control optimization
problem (6)–(9) is also ill-posed. To study our problem, we will use stabilizer of Tikhonov [2]. Effective tool is the
method of regularization. In our case

α
π∫
0

|ψ(x)|2 dx, (α > 0)

will serve as a stabilizer. We consider the problem of minimizing the following functional

Jα(y,ψ) =

π∫
0

|yx(x,−1)−ϕ ′
1(x)|2dx+α

π∫
0

|ψ(x)|2dx→ min
ψ∈Ug

. (10)

Thus, we have regularized optimization problem (6)–(8), (10). Due to the presence of the stabilizer the problem
has become strictly convex, namely we get well-posed optimization problem. Therefore, for each value α > 0 this
problem has the unique optimal solution that delivers the minimum value to minimized functional (10). However, it
does not exclude the fact that the minimum value problem of functional (10) can be strictly greater than zero. For
optimal control problem (6)–(8), (10) we will establish optimality conditions. We introduce the concept of optimal
control.

Definition 1. An element ψ ∈ L2(0,π) which satisfies the condition
Jα(ψ) = inf

ψ∈Ug
Jα (ψ)

is called the optimal control.

We denote the solution of problem (6)–(8) by y(x, t;ψ) corresponding to the given control ψ(x) ∈ Ug.
So y(x, t;0) corresponds to the solution of problem (6)–(8) when ψ(x)≡ 0. Then, we get

π(ψ1,ψ2) =

π∫
0

[yx(x,−1;ψ1)− yx(x,−1;0)][yx(x,−1;ψ2)− yx(x,−1;0)]dx+α ·
π∫
0

ψ1(x) ·ψ2(x)dx,

L(ψ1) =

π∫
0

[ϕ ′
1(x)− yx(x,−1;0)][yx(x,−1;ψ1)− yx(x,−1;0)]dx.

Here, π(ψ1,ψ2) is the bilinear functional on Ug, L(ψ1) is the continuous linear functional on admissible set of
controls Ug, as it will be shown below, that the solution y(x, t;ψ) of problem (6)–(8) is not only continuous but it is
continuously differentiable on control ψ . Using the notation, functional (10) can be rewritten as

Jα(ψ) = π(ψ ,ψ)−2L(ψ)+

π∫
0

|yx(x,−1;0)−ϕ ′
1(x)|2dx.
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THE EXISTENCE OF SOLUTION OF THE REGULARIZED PROBLEM AND THE
VARIATIONAL INEQUALITY

The following theorem holds [9]:

Theorem 1. As π(ψ ,ψ) is the continuous symmetric quadratic functional on a Ug and satisfies the condition

π(ψ ,ψ)≥ c‖ψ‖2, (c= const> 0), (11)

then for problem (6)–(8), (10) exists only for ψ ∈ Ug:

Jα (ψ) = inf
ψ∈Ug

Jα(ψ).

Proposition 2 (Variational inequality). The function ψ ∈ Ug is a function of the optimal control if and only if the
following inequality holds:

〈Jαψ (ψ),ψ −ψ〉 ≥ 0 for all ψ ∈ Ug,

namely we have

π∫
0

[
yx (x,−1;ψ)−ϕ ′

1(x)
] ∂

∂x
{
yψ (x,−1;ψ) [ψ(x)−ψ(x)]

}
dx

+α
π∫
0

ψ(x) [ψ(x)−ψ(x)]dx≥ 0 for all ψ ∈ Ug. (12)

We now carry out the necessary further transformations of variational inequality (12). For this purpose, we rewrite
the boundary value problem (6)–(8) in the operator form A y = F = { f ,ϕ2,ψ}. As for any admissible controls
boundary value problem (6)–(8) is uniquely solvable, then its solution y(x, t;ψ) can be written in the following form
y(x, t;ψ) =A −1F =A −1

0 f +A −1
1 ϕ2+A −1

2 ψ .Next, we take the derivative of this solution in the direction ofψ−ψ.
We have

yψ(x, t;ψ) · [ψ−ψ ] =A −1(ψ−ψ) =A −1
0 f +A −1

1 ϕ2+A −1
2 ψ− [A −1

0 f +A −1
1 ϕ2+A −1

2 ψ ] = y(x, t;ψ)−y(x, t;ψ).

Thus inequality (12) has the form:

π∫
0

[
yx (x,−1;ψ)−ϕ ′

1(x)
] · [yx(x,−1;ψ)− yx (x,−1;ψ)]dx+α ·

π∫
0

ψ(x) · [ψ(x)−ψ(x)]dx≥ 0 for all ψ ∈ Ug. (13)

THE ADJOINT BOUNDARY VALUE PROBLEM

For further study of regularized optimization problem (6)–(8), (10), we introduce the adjoint boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt(x, t)+ vxx(x, t) = 0, x ∈ (0,π), t ∈ (−1,1),
v(0, t) = v(π , t) = 0, t ∈ (−1,1),
x∫

η
vt(ξ ,−1)dξ =−yx (x,−1;ψ)+

+ϕ ′
1(x)+ yη (η ,−1;ψ)−ϕ ′

1(η) for all 0< η < x< π ,

vt(x,1) = 0.

(14)
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THE OPTIMALITY CONDITIONS

As

1∫
−1

π∫
0

[ỹtt (x, t)+ ỹxx(x, t)]v(x, t;ψ)dxdt =

π∫
0

[ψ(x)−ψ(x)]v(x,1;ψ)dx

+

π∫
0

[y(x,−1;ψ)− y(x,−1;ψ)]vt(x,−1;ψ)dx= 0. (15)

Then from relation (15), we finally obtain the desired variational inequality

π∫
0

[−v(x,1;ψ)+α ·ψ(x)] · [ψ(x)−ψ(x)]dx≥ 0 for all ψ ∈ Ug. (16)

Thus, on the basis of Proposition 2 we have established the optimality conditions, which can be formulated as the
following proposition:

Proposition 3. The elementψ(x) is the optimal solution to the problem (6)–(8), (10), if and only if it satisfies boundary
value problems (6)–(8), (14) and variational inequality (16).

APPLICATION OF THE METHOD OF SEPARATION OF VARIABLES

For resolving the conditions of an optimality (6)–(8), (14) and (16) we use a method of separation of variables. We
will search solutions of boundary value problems (6)–(8) and (14) in the form

y(x, t) =
∞

∑
k=1
yk(t)Xk(x), v(x, t) =

∞

∑
k=1
vk(t)Xk(x),

where
Xk(x) =

sinkx√
π/2

, λk = k2, k= 1,2, . . . (17)

are systems orthonormalized eigenfunctions and eigenvalues for a spectral problem:

X ′′(x) = λ ·X(x), X(0) = X(π) = 0.

From (6)–(8), (14) and (16) we accordingly obtain{
y′′k (t)− k2yk(t) = fk(t), t ∈ (−1,1),
y′k(−1) = ϕ2k; y′k(1) = ψk; k= 1,2, . . . ,

(18)

{
v′′k (t)− k2vk(t) = 0, t ∈ (−1,1),
v′k(−1) = k2[yk(−1)−ϕ1k]; v′k(1) = 0; k= 1,2, . . . ,

(19)

[−vk(1)+α ·ψk] · [ψk−ψk]≥ 0, for ∀ ψk, k = 1,2, . . . , (20)

where fk(t), ϕ1k, ϕ2k, ψk, ψk, k = 1,2, . . . are Fourier-coefficients of functions f (x, t), ϕ1(x), ϕ2(x) and ψ(x), ψ(x)
on system (17).
Assume us write solutions of boundary value problems (18) and (19):

yk(t) = ψk ·
coshk(t+1)

sinh2k
−ϕ2k ·

coshk(1− t)
k sinh2k

+

1∫
−1
Gk(t,τ) · fk(τ)dτ, (21)
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vk(t) =−[yk(−1)−ϕ1k] · k coshk(1− t)sinh2k
, (22)

where

Gk(t,τ) =

⎧⎨
⎩

− coshk(1−t)·coshk(1+τ)
sinh2k , −1< τ < t < 1;

− coshk(1−τ)·coshk(1+t)
sinh2k , −1< t < τ < 1.

From (20) and (21)–(22) we find

−vk(1) = [yk(−1)−ϕ1k] · k
sinh2k

,

yk(−1;ψk) =−ϕ2k
coth2k
k

+ψk
1

sinh2k
+

1∫
−1
Gk(−1,τ) fk(τ)dτ,

⎡
⎣Akα ψk−ϕ1k−ϕ2k

coth2k
k

+

1∫
−1
Gk(−1,τ) fk(τ)dτ

⎤
⎦ · [ψk−ψk]≥ 0 for all ψk, (23)

where Akα = k+α sinh2 2k
k sinh2k , k= 1,2, · · · .

Now we put, that Ug ≡ L2(0,π). Since the functions ψ(x) do not have any restrictions except for belonging to the
space L2(0,π), from (23) we can find the optimal values of Fourier coefficients ψk, k= 1,2, . . . :

ψk = A
−1
kα

⎡
⎣ϕ1k+ϕ2k

coth2k
k

−
1∫

−1
Gk(−1,τ) fk(τ)dτ

⎤
⎦ . (24)

Further, as α → 0 (21) and (24) imply that

yk0(t) = lim
α→0

yk(t) = ϕ1k coshk(1+ t)+ϕ2k
sinhk(1+ t)

k

− coshk(1+ t)
1∫

−1
Gk(−1,τ) fk(τ)dτ +

1∫
−1
Gk(t,τ) · fk(τ)dτ, (25)

ψk0 = lim
α→0

ψk = ϕ1k sinh2k+ϕ2k
cosh2k
k

− sinh2k
1∫

−1
Gk(−1,τ) fk(τ)dτ. (26)

Additionally, the solutions yk(t) found under formula (21) according to optimal Fourier coefficients ψk, k= 1,2, . . .
(24) must satisfy limiting relations: lim

α→0
yk(−1) = ϕ1k, which really hold. And it is coordinated with a condition

y(x,−1) = ϕ1(x) from (3).
Thus, for finding of the exact solution of problem (6)–(8) according to (26) we construct the following series:

ψ(x) =
∞

∑
k=1

√
2/π sinh2k

⎡
⎣ϕ1k+ϕ2k

coth2k
k

−
1∫

−1
Gk(−1,τ) fk(τ)dτ

⎤
⎦ sinkx,

and for initial Cauchy-Dirichlet problem (1)–(3) we obtain the solution on the basis of formulas (25).
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CONCLUSION

From equalities (25) and (26) the following directly holds:
Firstly, with growth of index k and at α → 0 the Fourier-coefficients of the function ψ(x) and, respectively, the

solution yk(t) can increase without limit if this growth is not be "suppressed" with correspondingmore rapid decrease
of the absolute values of the coefficients ϕ1k, ϕ2k and values of norms ‖ fk(t)‖L2(−1,1).
Secondly, boundary value problem (1)–(3) under conditions (5) has unique L2-strong solution [10] if and only if

{exp{2k} ·ϕ1k}∞
k=1 ,

{
k−1 exp{2k} ·ϕ2k

}∞
k=1 ,

{
exp{2k} · ‖ fk(τ)‖L2(−1,1)

}∞
k=1 ⊂ l2. (27)

Thus, it is clear not only the meaning of regularization in problem (6)–(8) and (10), but also the nature of
incorrectness in Cauchy-Dirichlet problem (1)–(3) [6, 7]. And regularization allows us to find an approximate solution.
Thirdly, we consider the example of Hadamard (see p.37, [11]). To receive analogue of the Hadamard example in

problem (1)–(3) it is necessary to accept:

f (x, t) = 0, ϕ1(x) = 0, ϕ2(x) =
√
2/π · k · exp{−

√
k}sinkx, k ∈N.

Really, the solution of Cauchy-Dirichlet problem for Laplace equation has the form:

y(x, t) =
√
2/π · exp{−

√
k}sinkx · sinhk(t+1), k ∈ N. (28)

This solution of a problem in example of Hadamard considered by us is unique. Moreover, as k→ ∞ the function
ϕ2(x) approaches uniformly zero and that not only, but also all its derivatives approache zero and it belongs to space
L2(0,π). However the solution (28) at any t > −1 has the form of a sinusoid with an arbitrarily large amplitude and
does not belong to space L2((0,π)× (−1,1)).
In order to the function ϕ2(x) satisfied to condition (27), it is necessary and sufficient, that the Fourier-coefficients

ϕ2k had the asymptote behavior for large k of order exp{−(2+ε)k}where ε > 0. In example of Hadamard considered
by us we have asymptote which is only equal to exp{−√

k}, and it is obviously not enough for correctness of Cauchy-
Dirichlet problem for Poisson equation.

FIGURE 1. Graph of solution yk(x, t) at k = 1,6 of (28).
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