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Modelling of ‘Evolution Small-Scale
Magnetohydrodynamic Turbulence Depending
on the Magnetic Viscosity of the Environment

Aigerim Abdibekova!®)  Bakhytzhan Zhumagulov?,
and Dauren Zhakebayev! ()

! Al-Farabi Kazakh National University, Al-Farabi ave. 71,
050040 Almaty, Kazakhstan
a.aigerim@inbox.ru, daurjaz@mail.ru
% National Academy of Engineering of the Republic Kazakhstan,
Bogenbai Batyr str. 80, 050010 Almaty, Kazakhstan

Abstract. The present work is devoted to study of self-excitation of
magnetic field and the motion of the conducting fluid at the same time
taking into account acting forces. The idea is to specify in the phase space
of initial conditions for the velocity field and magnetic field, which satisly
the condition of continuity. Given initial condition with the phase space
is translated into physical space using a Fourier transform. The obtained
velocity field and magnetic field are used as initial conditions for the fil-
tered MHD equations. Further is solved the unsteady three-dimensional
equation of magnetohydrodynamics to simulate homogeneous MHD tur-
bulence decay.

Keywords: MHD turbulence + Turbulence + Small-scale « LEES

1 Introduction

An examination of the homogeneous magnetohydrodynamic turbulence decay
process, in spite of the large number of publications in this field, is a relevant
task for researchers of several generations. The influence of magnetic field on the
conducting fluid is studied in various fields of science and used in an engineering
and technology. Therefore, studies of magnetohydrodynamic turbulence decay is
an important task in the fields of: forming astrophysical and geophysical phe-
nomena, MHD generators, plasma accelerators and engines. The study of the
magnetohydrodynamic (MHD) turbulence process in a small range of change
of the Reynolds (Re,,) magnetic number can be modeled and experimentally
investigated, while the same process remains beyond experimental reach and
computational techniques for a broad range of values. Research problems of the
magnetic field depending on the electro conductive fluid is divided into three
types:
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14 A. Abdibekova et al.

1. An examination of the MHD turbulence at a constant value of the magnetic
field.

2. An examination of the self-excitation of magnetic field at a given velocity
of the flow.

3. An examination of the self-excitation of magnetic field and the motion of
a conducting fluid at the same time taking into account acting forces.

The problem of the magnetic field influence on turbulent flows was first raised
by [1]. who provided basic equations and an analytical solution for the movement
of an electrically conducting fluid. The first numerical study of magnetohydro-
dynamic turbulence problem of the first type conducted by [2] at the magnetic
number Re,, << 1. The numerical experiment of Schumann was the reflection
of the idea of [3], who researched a homogeneous isotropic flow influenced by
an applied external magnetic field. The modeling outlined in the publications of
these scientists is performed using a spectral method, which is used as the basis
for presenting a quantitative description of magnetic damping, the emergence
of anisotropy, and the dependency of the results on the presence or the absence
of a non-linear summand in the Navier-Stokes equation. The low performance
of computing machines at that time did not permit the full solution of this
problem. Later, a similar problem was researched first by [4] and later by [5].
These authors presented the results of direct numerical modeling of large-scale
structures in a periodic magnetic field. which reflected a change in the turbu-
lence statistical parameters as a result of an imposed magnetic field influence.
The contribution of these scientists in this area of expertise is determined by
proving that the behavior of two- and three-dimensional structures varies sub-
stantially. A similar result was obtained by [6] in examining locally isotropic
structures by the method of large eddies. Although the result obtained for the
anisotropy invariant distribution and the Reynolds strength was discussed by
several researchers, the findings on this matter cannot be considered conclusive
because the force of the magnetic field is the determining factor for the change of
quantitative indicators of invariants, which was not demonstrated by the author.

A generalization of a linear case researched by [2] and [3] is featured in pub-
lications by [7]. These researchers demonstrated a redistribution of the kinetic
energy between velocity components, which indicated an inconsistency with a
previously presented linear theory. In a nonlinear case. velocity components that
are parallel and perpendicular to the magnetic field decay at various velocities,
which is an apparent inconsistency with the earlier numerical experiments.

The process of the magnetic field influence on a developed turbulence was
examined by [8],and demonstrated the possibility of using the quasi-stationary
approximation for the solution of the second type problem and suggested to use
quasi-linear approximations to solve the problem at Re,, = 20. One of the second
type problem results were reported in [9], the modeling of a diminishing MHD
turbulence by LES and DNS methods and demonstrated that the magnetic field
at the initial time started to decay under the influence of the total kinetic energy.
This effect is consistent with Joule dissipation. A similar picture of the decay
was not reported by the authors because their main objective was the evaluation
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the model adequacy for the LES and DNS methods. Accordingly, there was a
justification of the modified dynamic Smagorinsky model for simulation of the
temporal decaying magnetohydrodynamic turbulence.

The results of the third type of problem was presented by [10], and pro-
duced a detailed investigation of pseudospectral direct numerical simulation
(DNS), with up to 1024? nodes, three-dimensional incompressible magnetohydro-
dynamic (MHD) turbulence, without the mean magnetic field. Study was carried
out according to various statistical properties of the both decreasing and sta-
tistically steady MHD turbulence on the magnetic Prandtl number Prm, taken
over in a wide range, 0.01 < Pr,, < 10. Turbulent characteristics were obtained
at a constant magnetic viscosity for different values of the kinetic viscosity.

This work is devoted to study of self-excitation of magnetic field and the
motion of the conducting fluid at the same time taking into account acting
forces. The idea is to specify in the phase space of initial conditions for the
velocity field and magnetic field, which satisfy the condition of continuity. Given
initial condition with the phase space is translated into physical space using a
Fourier transform. The obtained of velocity field and magnetic field are used as
initial conditions for the filtered MHD equations. Further is solved the unsteady
three-dimensional equation of magnetohydrodynamics to simulate homogeneous
MHD turbulence decay.

2 Problem

The numerical modeling of a homogeneous MHD turbulence decay based on the
large eddy simulation method depending on the conductive properties of the
incompressible fluid is reviewed.

The numerical modeling of the problem is performed based on solving non-
stationary filtered magnetic hydrodynamics equations in conjunction with the
continuity equation in the Cartesian coordinate system in a non-dimensional
form:

;

(4 Wit 7] i 87'1.". o1 2
%T'l_}_gﬂ_z_):_gﬁl_l+_l__3_<a ))H ( 2)+A%(HiHj),

Az Ox; Re 9z Az Az O
(i) =0
Ba:j ?

O(H:) | o) _ oUlw) _ _1_ o (3(HE)) o)
at

a:lij E)n:j Rem ().1:1'

a(H;
61; =0,

5 = (W) — (wid;)) — (HH;) — (H:Hj)),

|l = (Gl — wly)) — (Fg) — (Fiig),
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where 1; (i = 1, 2, 3) are the velocity components, H,, H,, Hs are the magnetic
field strength components, A = H?/(4mwpV?) = IT/Re?, is the Alfvén number,
H is the characteristic value of the magnetic field strength, V' is the typical
velocity, IT = (VaL/ l/m)2 is a dimensionless value (on which the value I7 depends
in the equation for H;). If IT << 1, then dH;/dt = 0. The publication by [11]
discussed in detail the physics of phenomena related to the ability to disregard
the summand 8H; /0t. (Va)? = H? /4mp is the Alfvén velocity, p = p + H2A/2
is the full pressure, ¢ is the time, Re = LV /v is the Reynolds number, Re,, =
VL /vy, is the magnetic Reynolds number, L is the typical length, v is the
kinematic viscosity coefficient, v, is the magnetic viscosity coeflicient, p is the
density of electrically conducting incompressible fluid, and 7} T{JI- is the subgrid-

13?
scale tensors responsible for small-scale structures to be modeled. To model a
subgrid-scale tensor, a viscosity model is presented as 75 = —2vpS;;, where

vy = CgA? (25;-]-5}1-)}2' is the turbulent viscosity, Si; = (01;/0x; + 01;/0x:)/2
is the deformation velocity tensor value. To model a magnetic subgrid-scale
tensor, a viscosity model is used: 'r,g = —2n,J;;, where 7, = DgA? (jijjij)%
is the turbulent magnetic diffusion, the coefficients Cg, Dg are calculated for
each determined time layer, and Ji; = (0H;/0x; — OH;/dx;)/2 is the magnetic
rotation tensor.

Periodic boundary conditions are selected at all borders of the reviewed area
of the velocity components and the magnetic field strength.

The initial values for each velocity component and strength are defined in
the form of a function that depends on the wave numbers in the phase space:

a0y = KRS i oy k@A)

where 1; is the one-dimensional velocity spectrum, i = 1 refers to the longitudinal
spectrum, i = 2 and i = 3 refer to the transverse spectrum, H; is the one-
dimensional magnetic field strength spectrum, m is the spectrum power, and
ki, ko, ks are the wave numbers.

For this problem we selected a variational parameter b and the wave num-
ber kpmaqz, which determine the type of turbulence. For modeling homogeneous
MHD turbulence can be set parameters kpq. and b, which correspond to the
experimental data [12].

3 Method for Calculating the Small-Scale Turbulence
Coefficient

Along with the accepted calculated grid, a grid with twice the size of cells
along each axis is used. The large grid number cell is indicated as p, g,
(p, g, T are the axes numbered z, @2, 23, respectively), p = 1, 2, 3, ..., N/2,
9=123,..,N2/2, and r = 1, 2, 3, ..., N3/2. The cell with the number «
along axis #; includes the cells of the initial grid with numbers n = 2p — 1 and
n = 2p, where n changes within the range from 1 to N;. Similar to number g,
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for 25 determined cells with numbers m = 2g — 1 and m = 2¢, ¢ = 2r — 1 and
q = 2r. Therefore, one cell p, g, r of a large grid is the same as eight cells of the
initial grid.

The average values u?, u3, u; for the total volume of the calculated area of
the liquid flow are marked (u1)? (uz)?, (us)®. These values can be calculated
using smaller and larger calculation grids:

Ny Nz Ns

<u? >= N,N2N3 ZZZ uf)?], (2)

n=1lm=lg=
- V2 ey Ve,
where (#;)° = @;%; and (u})? = u - ul.

The subgrid-scale tensor for smaller cells is

m =u = ~2-Cg - A2 (2 By Tyt Ty, ®)

k¥

where A = (A.,-AjA;\,)’i" - is the width grid filter of the small cell.
The deformation velocity calculated in smaller cells is

= 1 (0w Ou
Sia"i(ﬁ-j*a@)'

where n =1,N;, m=1,Ny, ¢=1,N3
By placing expression (3) into equation (2), we can obtain the average velocity
value calculated in smaller cells:

Ny Ny N3

< ”3>32N1N2N; ZZZ[(u )>—2-Cs-A2-(2- 8, - )S*} (4)

The average velocity calculated in larger cells is
N1/2 N»J2 Ns/2
< e — NlNst Z Z Zl [( it g Y (i .sfj)%sfj].
(5)

where 4; = (A.,:AjAk)% - is the width grid filter of the large cell, A; = 2+ As.
The deformation velocity calculated in larger cells is

-1 [od oul

wherep=1, 2, 3, . ,2,9—1 2.3 ,2,1"-—123 2.

d@p-1,20—1, 2r — 1) +a8(2p -1, 29, 2r — 1)+
5.0 =2 +aS(2p -1, 29, 2r) +@¥(2p — 1, 29 — 1, 2r)+
P97 =g Lad(ep, 29 -1, 2r — 1) +@S(2p, 29, 2r — 1)+
+'&’;,S(2pa 297 2T) +ﬁ'1s(2p7 29 i 1) 27)
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We introduce the following notation:

.
Fr=(<m > +<m> +<m> -<B > —<@B > - <@ >!)°.
From equations (4) and (5), we can conclude

- (Zu R, Ve C._S')Qy

where
Ny Ny N3 Ni1/2 Ny/2 N3/2
ZU
N1N2N3 712:1 7; ;( NlNzN :; Z 12:(
'2
YV = g Z ‘ Z( 5)7 (2875288 —

n=1 m=1 q=1

Ni/2 Na/2 N3/2 5 z
—mE 2 o o (Z2(4)°(28,8])58)).

p=1 g=1 r=l
The condition for achieving the minimum is

OF"
0Cs

Thus, Z* -Y*.Cg = 0.

At a certain time layer Ty, the empirical coeflicient of viscosity model is
calculated by the following formula: Cs = Z* /Y™, where Tyse, = 10 - 7, 7-time
step.

=—2(Z2*-Y*.Cs) - Y* =0.

4 Method for Calculating the Small-Scale Magnetic Field

Here is used the same grid, which was used to calculate the small-scale turbulence
coefficient, which deals with the grid twice the size of cells along each axis.
The average values of magnetic field strength H?, H3, H2 for the total vol-
ume of the calculated area of the liquid flow are marked (Hy)?, (Ha)?, (Hs)?.
These values can be calculated using smaller and larger calculation grids:

Ny N3 Ng

<H{> N1N2N3 ZZZ (Bi)* + (H) ] (©)

n=1m=1q=
where (I:_l) = H;H; and (H!)* = H! - H..

The magnetic subgrid-scale tensor f(n smaller cells is

15 =HH] =—2-Dg= A3 (2 -Tg; - Ti) - T, (7)

The magnetic rotation tensor calculated in smaller cells is

W= 9\ 0w; 0w )
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where n =1,N;, m=1,N>, ¢=1,N3
By placing expression (7) into equation (6), we can obtain the average velocity
value calculated in smaller cells:

N1 Ny Nj

T 1 T3\’ s s\% 18
< Hf> ——~m.ﬂgﬁ;;[(Hi)l_z.DS.Ag.(g.Jﬁ.Jij)zjij], (8)

The average value of magnetic field strength calculated in larger cells is

8 N1/2 N2/2 N3/2

F Rt D W ¢ il B TR B R LA R
p=1 g=1 =r=1
(9)

The magnetic rotation tensor calculated in larger cells is

S _1 (afzg 31?;.)’

LA 5 8:1:,- h (9:12,:

where =1, 2, 3 s N1f25 0= 1; 2,8 wss5 Nojf 257 =15 2; 3; ws5 N3j2:

H$(2p—1,29—-1, 2r— 1)+ H}(2p—1, 2g, 2r — 1)+
A (p,g,r) = | TEE(p -1, 29, 2r) + H¥(2p — 1, 29 -1, 2r)+
NS 8 | +HS(2p, 29— 1, 2r — 1) + H¥(2p, 2g, 2r — 1)+
+H$(2p, 29, 2r) + H}(2p, 29— 1, 2r)

We introduce the following notation:
=0 (. — oo o s - 2
F”:(<Hf>’+<H§>3+<H§>S—<Hf>’—<H§>‘—<H§>‘) !
From equations (8) and (9), we can conclude
FH = (ZH | YII . DS)23

where

Ny Ny N3 N1/2 Na/2 N3/2

1 —2 8 2t
Z% = N1NoN; Z Z Z(Hi)s_—NlNst ; ; ; ; (@),

n=1 m=1 ¢=1

H 1 L 2 sk
Y= Z_jl z_jl gl(—2 (4,)°(2J5,J2)3J%) —
. qﬁx/'z N2/2 N3/2 5 ; ;
_le\sszs. Z Z 21 (_2 (Al) (2JiljJij)%Jij)‘

=1 g=1
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The condition for achieving the minimum is

) FI-I
=-2(z" -Y¥".Dg)-YH =0.
D5 ( s) 0
Hence, ZH — Y . Dg = 0.
Thus, the empirical coefficient of viscosity model for magnetic field at a
certain time step Tszep assumes the following form: Dg = Z H / Y#H,

5 Numerical Method

To solve the problem of homogeneous incompressible MHD turbulence, a scheme
of splitting by physical parameters is used:

L (u*—u?)/r=—(u"V)u*+ A (H"V)H" + (1/Re) (Au*) — V7Y,
II. Ap=Vu*/T,

L (u™t! —u*) /7 =-Vp.

IV. (H™* — H") /7 = —rot(u™*! x H") + v AH™H — V7 H

The following physical interpretation of the splitting diagram is suggested.
During the first stage, the Navier-Stokes equation is solved without the pres-
sure consideration. For the approximation of convective and diffusion equation
members, a compact scheme of an increased order of accuracy is used [13]. Dur-
ing the second stage,the Poisson equation is solved, which is obtained from the
continuity equation by considering the velocity fields of the first stage. For the
three-dimensional Poisson equation, an original solution algorithm was devel-
oped — a spectral transform in combination with the matrix run. During the
third stage, the obtained pressure field is used to recalculate the final velocity
field. During the fourth stage, the obtained velocity field is used to solve the
equation to obtain the components of the magnetic field strength, which are
included in the initial equation.

6 Numerical Modeling Results

Numerical model allows to describe the homogeneous magnetohydrodynamic
turbulence decay based on large eddy simulation. For this task, the kinematic
viscosity ¥ = 10~ was taken constant and the magnetic viscosity were set in the
range of v,, = 10721074, The characteristic values of the velocity, length, mag-
netic field strength were taken equal to: Ucy = 1, Loy = 1, Hop = 1 respec-
tively. Reynolds number is Re = 107, the magnetic Reynolds number varied
depending on the magnetic viscosity coeflicient. The Alfven number character-
izing the motion of conductive fluid for various numbers of magnetic Reynolds:
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A = Ha?/Rey,, where Hartmann number is Ha = 1. For the calculations used
grid size 128x128x128. The time step was taken equal Ar = 0.001.

As result of simulation at different magnetic Reynolds numbers were obtained
the following turbulence characteristics: kinetic energy, magnetic energy, integral
scale longitudinal correlation functions.

Figure 1 shows the evolution of the kinetic and magnetic energy changes
depending on Re,, number at different points in time. Re,, was selected in
range 10% + 10*. For the first time, the result is obtained for the turbulence
decay modeling under the impact of a magnetic field caused by the change in
Re,, number on the kinetic energy of the turbulent flow of a fluid with vari-
ous conductive properties. It is easily seen the kinetic energy in case of a high
environment conductivity, when Re,, = 10°, the friction force increases and the
flow velocity is reduced more quickly in case of a high environment conductivity
than when Re,, = 10, which is consistent with a low conductivity environment,
in this option, the friction force has less impact on the flow rate. Thus, 1 illus-
trates the dynamics of the mutual influence of magnetic and kinetic energies at
different points in time: at the initial point in time, the kinetic and magnetic
energies are defined identically; at the next point when the fluid with a higher
conductivity is studied, the turbulence decay occurs faster than in case where
Re,,, starts to increase, which determines the fluid with a lesser conductivity.
When value Re,, = 10000, the turbulence decay virtually corresponds to the
case of an isotropic turbulence decay, as per Abdibekov and Zhakebayev [14].

According to semi-empirical theory of turbulence integral scale should grow
with time. The results presented in Figure 2 illustrates the effect of magnetic
viscosity on the internal structure of the MHD turbulence. Variation of the
coeflicient of magnetic viscosity leads to a proportional change in the integral
scale. Figure 2 shows that the size of large eddies rapidly increases at small
number of magnetic Reynolds Re,, = 10%, than in the case, when Re,, = 10?
which leads to fast energy dissipation.

Figure 3 shows the change in the micro scale - calculated at different numbers
of magnetic Reynolds 1) Re,, = 10%; 2) Re,, = 2:10%; 3) Re, = 5-10%; 4) Re,n, =
10%. Figure 3 shows the change of the Taylor microscale at different magnetic
Reynolds numbers. It can be seen that in the case Re,, = 10® when the magnetic
viscosity coeflicient is large then the dissipation rate increases. In the case when
the magnetic viscosity coeflicient is smaller then the scale gradually increases,
and the small scale structure of the turbulence tends to slowly isotropy. This
also indicates that with small numbers Re,, the decay of isotropic turbulence
occurs faster than in the case when Re,, is high.

Figure 4 shows the changes of the longitudinal correlation function calculated
at Re,, = 10% and Re,, = 10%. These illustrations also show that there are an
influence of the magnetic field on the isotropic turbulence decay, as these figures
are fixed the result of changes in the correlation functions at different Re,,.

The correlation function is expressed the average by volume the correlation
ratio between the components of the velocity at various points, the farther points
are located between the various components of the velocity, the smaller should

B3
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Fig. 1. Change of the kinetic (a) and magnetic (b) energies depending on the Re,,
number at different points in time

be the correlation coefficients, i.e. they should be close to zero. Figure 4a shows
the change in the longitudinal correlation function f(r) in time and calculated
at Re = 101, Re,, = 10%. It is seen that with increasing value r of the function
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Fig. 2. Change of the integral turbulence scale calculated at different magnetic
Reynolds numbers: 1) Ren, = 10%; 2) Re,, = 2-10%; 3) Ren = 5-10°%; 4) Ren = 10*
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Fig. 3. Change of Taylor-scale calculated at different magnetic Reynolds numbers: 1)
Rem = 10%; 2) Rem = 2-10%; 3) Rem = 5-10%; 4) Re, = 10*

tends to zero. Character of the correlations change corresponds to the change of
the correlation functions given in [14].

From the figures it is seen that in the case of high medium conductivity at
Re,, = 10% the frictional force increases and the flow rate is reduced faster than,
at Rem, = 104, that corresponds to the low conductivity of the medium, in this
version, the frictional force have minimal impact on the flow velocity. Based on
the study of the results determined that the first part of the turbulent kinetic
energy is used for turbulent mixing, the second part - at creating magnetic field
and the third part - on the forces of resistance between the components of the
velocity and magnetic tension.
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Fig. 4. Change the longitudinal correlation function f(r) when (a) Ren = 10 and (b)
Ren = 10 at different points in time: 1) ¢ = 0; 2) t = 0.2; 3) t = 0.3; 4) ¢ = 0.5

7 Conclusions

Based on the method large-eddy simulation was produced the numerical mod-
elling of influence magnetic viscosity to decay of homogeneous magnetohydrody-
namic turbulence, analyzing simulation results it is possible to make the following
conclusion: the magnetic viscosity of the flow has a significant influence on the
MHD turbulence, and therefore can be used for process control in the preparation
semiconductor structures of single crystals. Obtained results allow sufficiently
accurately calculate the change characteristics of homogeneous magnetohydro-
dynamic turbulence over time at large magnetic Reynolds numbers. Thus, the
numerical algorithm was developed for solving unsteady three-dimensional mag-
netohydrodynamic equations, for modeling MHD turbulence decay at different
magnetic Reynolds numbers. Physical processes and phenomena of homogeneous
magnetohydrodynamic turbulence identified in the numerical simulation. The
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proposed method can be used to solve the MHD turbulence without significant
changes.
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