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Abstract – We consider the numerical simulation of homogeneous magnetohydrodynamic turbulence decay 

depending on magnetic Reynolds number based on large eddy simulation. To close magnetohydrodynamic 

equation system the modified dynamic model is used and calculated at each time steps. Depending on the 

different magnetic Reynolds number the variation of the kinetic and magnetic energies of turbulence with time, 

and depending on the time the micro- and macro-scale turbulence were obtained. 

1. Introduction 

In spite of the large number of publications in this field, the study of the homogeneous 

magnetohydrodynamic (MHD) turbulence decay process is a relevant task for researchers of 

several generations. The influence of the magnetic field on conducting fluids is studied in 

different scientific fields and applied in engineering and technology. Therefore, investigations 

of the MHD turbulence decay is an important problem for astrophysical and geophysical 

phenomena formation, MHD generators, plasma accelerators and engines [1-4]. 

The research problems of the magnetic field influence on electrically conducting fluids 

are split in three types:  

1. Study of MHD turbulence at a constant value of the magnetic field.  

2. Study the magnetic field self-excitation at a given velocity of flow.  

3. Study of the magnetic field self-excitation and motion of a conducting fluid 

considering, at the same time, the acting forces.  

This work is devoted to the study of the magnetic field self-excitation and to the motion 

of a conducting fluid, at the same time taking into account the acting forces. Although a lot of 

authors have dedicated their works to this field it is still relevant today. The results of study 

this problem are presented in [5] the influence of external magnetic field on the  decay of 

MHD turbulent flow at the low magnetic Reynolds number by LES and DNS methods, and 

demonstrated that magnetic field in the start begins to decay when exposed to the total kinetic 

energy. This effect is consistent with Joule dissipation. LES method has shown excellent 

result in adaptation Smagorinsky dynamic model to the flow and the applied magnetic field 

through the dynamic procedure. A similar picture of the decay was not reported by the authors, 

Knaepen and Moin, because their main objective was the evaluation of the model adequacy 

for the LES and DNS methods.  

Later, a resembling problems for anisotropy of MHD turbulence were researched by [6, 7], 

which reflected the change in the turbulence statistical parameters as a result of an imposed 

magnetic field influence. The contribution of these scientists in this area of expertise is 

determined by proving that the behavior of two- and three-dimensional structures varies 
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substantially.  

In addition, investigation of pseudospectral direct numerical simulation, with up to 1024
3
 

nodes, three-dimensional incompressible MHD turbulence, and with no mean magnetic field 

in a high resolution was detailed in [8]. The study was carried out considering various 

statistical properties of both decreasing and statistically steady MHD turbulence on the 

magnetic Prandtl number Pm taken over a wide range of 1001.0  Pm . Turbulent 

characteristics were obtained at a constant magnetic viscosity for different values of kinetic 

viscosity.  

Therefore, there is a need to examine this process over a wide range of mRe  numbers to 

determine the pattern of the magnetic field impact on the turbulence decay for fluids that vary 

in their electrical conductivity. It is known, when the mRe  number is small, the impact of the 

magnetic field on the kinetic energy is significant because the turbulence degeneration is 

faster than in the case of a large mRe  number when the impact is negligible, and the process 

is similar to the case of an isotropic turbulence. This effect also demonstrates the process 

dynamics with various Alfvén numbers. This work is devoted to the study of the magnetic 

field self-excitation and to the motion of a conducting fluid, at the same time taking into 

account the acting forces. The idea is to specify initial conditions in the phase space for a 

velocity and magnetic fields, which satisfy the condition of continuity. The given initial 

condition with the phase space is translated into physical space using a Fourier transform. The 

obtained velocity and magnetic fields are used as initial conditions for the filtered MHD 

equations. Further, the unsteady three-dimensional MHD equation is solved to simulate the 

homogeneous MHD turbulence decay. 

 

2. Problem formulation 

The problem is numerically modelled by solving the non-stationary filtered magnetic 

hydrodynamics equations in conjunction with the continuity equation in the Cartesian 

coordinate system in a non-dimensional form: 
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where )3,2,1( iui are the velocity components, 321 ,, HHH  are the magnetic field 

strength components,   222 Re4 mVHA   is the Alfven number, H is the 
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characteristic value of the magnetic field strength, V is the typical velocity,  2mALV 

is a dimensionless value (on which the value   depends in the equation for 
iH ). If 1 , 

then 0 tH i
. The publication [9] discusses in detail the physics of the phenomena related 

to the ability to disregard the summand 4HVA   is the Alfven velocity, 

22 AHpp   is the full pressure, t  is the time, /Re LV  is the Reynolds number, 

mm LV /Re   is the magnetic Reynolds number, L  is the typical length,  is the 

kinematic viscosity coefficient, m  is the magnetic viscosity coefficient,   is the density of 

an electrically conducting incompressible fluid, and 
H

ji

u

ji  ,  are the subgrid - scale tensors 

responsible for small-scale structures to be modelled.  

Periodic boundary conditions are selected at all boundaries of the considered area of the 

velocity components and magnetic field strength. The initial values for each velocity 

component and strength are defined in the form of a function, which depends on the wave 

numbers in the phase space [10].  

 

3. Method to calculate the small-scale turbulence coefficient. 

Along with the accepted calculated grid, a grid with twice the size of the cells along each axis 

is used. The large grid number cell is indicated as rgp ,,  ( rgp ,, are the axes numbered 

321 ,, xxx  respectively), ,2...,,3,2,1 1Np   ,2...,,3,2,1 2Ng   and 2...,,3,2,1 3Nr  . 

The cell with the number   along the axis 1x  includes the cells of the initial grid with 

numbers 12  pn  and ,2pn   where n  varies within the range from 1 to 1N . Similar 

to the number g , for 2x  cells with numbers 12  gm  and gm 2 , 12  rq and 

rq 2 were determined. Therefore, one cell rgp ,,  of a large grid is the same as eight cells 

of the initial grid. 

The average values 2

3
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1 ,, uuu  for the total volume of the calculated area of the liquid 

flow are marked as .,,
2
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1 uuu  These values can be calculated using smaller and 

larger calculation grids: 

   
  

1 2 3

1 1 1

22

321

2 )()(
1 N

n

N

m

N

q
iii uu

NNN
u  (2) 
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where   3
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kjis   is the width grid filter of the small cell. 

The deformation velocity calculated in smaller cells is ,
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where 321 ,1,,1,,1 NqNmNn  . 

By substituting expression (3) into Eq. (2), we can obtain the average velocity value 

calculated in the smaller cells: 
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The average velocity calculated in the larger cells is 
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where   3
1

kjil   is the width grid filter of the large cell, sl  2 . 

The deformation velocity calculated in the larger cells is 
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The condition for achieving the minimum is 
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With a certain time step Tstep , the empirical coefficient of the viscosity model is 

calculated by the following formula ,uu

s YZC   with 10Tstep ,   is the time step. 

 

4. Method to calculate the small-scale magnetic field 

Here the same grid is used, which was used to calculate the small-scale turbulence coefficient, 

which deals with a grid twice the size of the cells along each axis. 

The average values of the magnetic field strength 2
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By substituting expression (7) into Eq. (6), we can obtain the average velocity value 

calculated in the smaller cells: 
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The average value of the magnetic field strength calculated in the larger cells is 
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The magnetic rotation tensor calculated in the larger cells is 
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The condition for achieving the minimum is 
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Thus, the empirical coefficient of the viscosity model for the magnetic field at a certain 

time step Tstep  assumes the following form: ./ HH
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5. Numerical method 

To solve the problem of homogeneous incompressible MHD turbulence, a scheme of splitting 

by physical parameters is used. The following physical interpretation of the splitting diagram 

is suggested. At the first stage, the Navier–Stokes equation is solved with no pressure 
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consideration. For the approximation of convective and diffusion equation members, a 

compact scheme of an increased order of accuracy is used [11]. At the second stage, the 

Poisson equation is solved, which is derived from the continuity equation by considering the 

velocity fields of the first stage. For the 3D Poisson equation, an original solution algorithm 

has been developed: a spectral transform in combination with the matrix run. At the third 

stage, the obtained pressure field is used to recalculate the final velocity field. At the fourth 

stage, the obtained velocity field is used to solve an equation in order to obtain the 

components of the magnetic field strength, which are included in the initial equation. 

 

6. Algorithm to solve the equation of magnetic field strength 

Let us consider Eq. (1) as the first component of the magnetic field strength: 
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The strength of the magnetic field is found using the fractional step method. A run 

method is used at each stage of the fractional step method, i.e. a step-by step definition of the 

magnetic field strength values. 

At the first stage, the magnetic field strength 3

1
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H  is found in the direction of the 

coordinate 1x : 

.
2

1
,,1,,13,,12,,11

3

1

,,11

,,1
3

1

,,1 n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji
fHHHH

HH











 




 (11) 

The operator 11H  is 
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where the viscosity model and the magnetic rotation tensor are, respectively, 
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Similarly, the operator 12H  is 
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For the operator 13H , 

   ,
Re

1
13

3

2

3

1

2

13

3

13

H

m xx

H
Hu

x
H 














  

,2 1313 Jt

H    

,
2

1

1

3

3

1
13 





















x

H

x

H
J  

   13

3

12

2

1 uH
x

uH
x

f








  

 

Writing the operator 11H  in the finite difference form, 
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are determined as a convective member for the operator 12H  on a staggered grid as 
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Similarly, the diffusion member for the operator 12H  is 
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In addition, a strength tensor is determined for the operator 12H : 
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Similarly, the operator 13H  is determined and, correspondingly, the convective term is 
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The diffusion member for the operator 13H  is 
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and the strength tensor is 
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As a result, we have 

         
 

      .

2

Re

1

2

1

,,1,,13,,12

,,112

1

3

1

,,11
3

1

,,1
3

1

,,11,,1
3

1

,,1

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

m

n

kji

n

kji

fHH

H
x

HHHHH






































  (15) 

The equation is solved by the run method and found to be   3

1

,,1

n

kji
H . The   3
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H  components of the magnetic field strength are defined in a similar way. Thus, all the 

components of the magnetic field strength have been determined in this way. 
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7. Numerical modelling results 

The numerical model allowed to describe the homogeneous magneto hydrodynamic 

turbulence decay based on large eddy simulation. For this task, the kinematic viscosity 
410 was taken constant and the magnetic Reynolds number was set in the range 

43 1010Re m . The characteristic values of the velocity, length, and magnetic field 

strength were taken equal to 1,1,1  charcharchar HLU , respectively. The Alfven number, 

characterizing the motion of conductive fluid for various magnetic Reynolds numbers, was 

ReRe/2  mHaA , where the Hartmann number was 1Ha . 

 

a) 
 

b) 

Figure 1: Variation of a) kinetic turbulent energy b) magnetic energy vs. magnetic Reynolds numbers 

at different points in time: ;102Re)2;10Re)1 33  mm .10Re)4;105Re)3 43  mm  

For the calculations, the grid 128x128x128 was used. The time step was taken equal to 

001.0 . As a result of the simulation with different magnetic Reynolds numbers, the 

following turbulence characteristics were obtained: kinetic energy, magnetic energy, integral 

scale, Taylor scale, transverse and longitudinal correlation functions. The results displayed in 

Fig. 1 shows the decay of kinetic and magnetic energies calculated at different magnetic 

Reynolds numbers. Figs. 1 shows the dynamics of the mutual influence of magnetic and 

kinetic energies at different time instants: at the initial time, the kinetic and magnetic energies 

were given the same; at the next instant when a fluid with high conductivity was studied. The 

decay of MHD turbulence occurred faster than when mRe  started to rise, which specifies a 

fluid with smaller conductivity, and at 410Re m  the decay of MHD turbulence practically 

corresponded to the decay of isotropic turbulence [12]. 

According to the semi-empirical theory of turbulence, the integral scale must grow with 

time. The results presented in Fig. 2a illustrates the effect of magnetic Reynolds number on 

the internal structure of MHD turbulence. A variation of the coefficient of magnetic viscosity 

leads to a proportional change in integral scale. Fig.2a shows that the size of large eddies 

rapidly increases at a small magnetic Reynolds number 310Re m than in the case, when
410Re m , which leads to fast energy dissipation. Fig. 2b shows the change of the Taylor 

microscale at different magnetic Reynolds numbers. It can be seen in the case with 
310Re m when the magnetic Reynolds number is large, the dissipation rate increases. In the 

case 410Re m when the magnetic Reynolds number is smaller, the scale gradually 

increases, and the small-scale structure of turbulence tends to slow isotropy. This also 
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indicates that with small mRe  numbers the decay of isotropic turbulence occurs faster than 

in the case when mRe is high. 

 
a) 

 
b) 

Figure 2: Change of the a) integral turbulence scale and b) Taylor scale calculated at different magnetic 

Reynolds numbers at different points in time: ;10Re)1 3m ;102Re)2 3m ;105Re)3 3m  

.10Re)4 4m  

 

a) 
 

b) 

Figure 3: Change of the longitudinal correlation function )(rf when )(a  310Re m and )(b  

410Re m at different points in time: .5.0)4;3.0)3;2.0)2;1.0)1  tttt  

 

The correlation function expresses an averaged by volume correlation ratio between the 

velocity components at various points: the farther points are located between different 

components of the velocity, the smaller ones should be the correlation coefficients, i.e. they 

should be close to zero. Fig. 3a shows the change in longitudinal correlation function )(rf  

in time calculated at 410Re m and 310Re m . It is seen that, when being increased, the 

function value r tends to zero. The character of the correlation change corresponds to the 

change of the correlation functions given in [13]. 

 

8. Conclusions 

Based on the LES method, the influence of magnetic Reynolds number on the decay of 

uniform magnetohydrodynamic turbulence has been numerically modelled. The obtained 

results allow to sufficiently accurately calculate the variations of the characteristics of 

uniform MHD turbulence with time at large magnetic Reynolds numbers. A numerical 

algorithm has been developed to solve unsteady three-dimensional magnetohydrodynamic 

equations as well as to model the MHD turbulence decay at different magnetic Reynolds 

numbers.  
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A numerical algorithm has been developed to solve unsteady three-dimensional 

magnetohydrodynamic equations as well as to model the MHD turbulence decay at different 

magnetic Reynolds numbers. Physical processes and phenomena of uniform MHD turbulence 

were identified in the numerical simulation. 
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