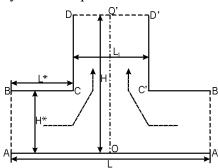
1st INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS

PROCEEDING BOOK


SEPTEMBER 03-07, 2012 PRISHTINE KOSOVO

Assessing t he Relationship Between Educational P erformance and A ttitudes of T urkish Students İ. Demir, S. Kılıç	300
Comparing T urkey's D omestic D ebt S tock I ncrement w ith L inear R egression, R idge Regression and Principle Component Regression İ. Demir, G. Altunel, E. Cene	301
The Adomian Decomposition Method for Solving Nonlocal Boundary Value Problems for First-Order Linear Hyperbolic Equation L. Bougoffa	303
Genetic Algorithm and Financial Optimisation M. A. Ünal	304
Uniform Time Controllability of Affine Control Systems on Semisimple Lie Groups M. Kule	305
The E ffect of I nstruction S tates Designed A ccording to Van H iele G eometrical Thinking Levels on the Geometrical Success M. Terzi, Ş. Mirasyedioğlu	306
On a Problem of Thermal Convection with Unset Flow Rate N.T. Danaev, B.S. Darybaev, B.A. Urmashev	309
Solution of Spherical Triangles in Geodesy with the Equations Used in Spherical Trigonometry N. Ersoy, E. Yavuz, R. G. Hoşbaş	310
Application of Incomplete Cylindrical Functions in the Diffraction of Gaussian Beam from a Half-Plane R. Bejtullahu, B. Kamishi, Z. Tolaj, F. Aliaj	311
Asynchronous Motor with Finite Element Method Nonlinear Analysis S. A. Korkmaz, H. Kürüm	312
Relationship Between Classical and Quantum Physic S. Ahmetaj, S. Kabashi, S. Bekteshi	314
Modeling of gas flow through a rectangular channel (variable leak valve) S. Avdiaj, N. Syla and F. Aliaj	314
Modelling Kosovo's Power System and Scenarios for Sustainable Development S. Bekteshi, S. Kabashi, S. Ahmetaj	315
The S pecific E xponential Stability of S olutions of Linear H omogeneous V olterra I ntegro- differential Equation of Sixth Order S. Iskandarov	317
Rendering Virtual Welding Seam Form S. Serttaş, K. Ayar, C. Öz, G. Cit	318
The R elationships A mong Interest Rate, E xchange R ate and Stock P rice: A B EKK – MGARCH Approach S. Türkyılmaz, B. Yıldız	321

On a Problem of Thermal Convection with Unset Flow Rate

Danaev N.T., Darybaev.B.S., Urmashev B.A.
Institute of Mathematics and Mechanics, Kazakh National University, Al-Farabi,
Kazakhstan, Nargozy.Danaev@kaznu.kz

Abstract. In the two-dimensional region Ω , as shown in the figure, we consider a system of equations of thermal convection in the following dimensionless form /1/:

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u}\nabla)\vec{u} + \nabla p = \frac{1}{\text{Re}}\Delta\vec{u} - \frac{Gr\vec{g}}{\text{Re}^2|\vec{g}|}T,$$

$$div\vec{u}=0$$
,

$$\frac{\partial T}{\partial t} + (\vec{u}\nabla)T = \frac{1}{\text{Pr Re}}\Delta T,$$

where
$$\vec{g} = (0, -g)$$
, $Gr = \frac{g\beta\Delta\theta L^3}{v^2}$, $Re = \frac{L\sqrt{\rho\Delta p}}{\mu}$, $Pr = \frac{v}{\lambda}$

dimensionless parameters of Grashof, Reynolds and Prandtl, $\Delta\theta$ - a characteristic temperature difference, v - kinematic viscosity, λ - coefficient of thermal diffusivity.

The boundary conditions are as follows:

on top of the solid wall (BC, CD):

$$u = v = 0, T = 0,$$

on the bottom wall (AA'):

$$u = v = 0, T = 1,$$

entrance boundary (AB):

$$\mathbf{v} = 0, p = 1, \frac{\partial T}{\partial \mathbf{r}} = 0;$$

on the outflow boundary (DO'):

$$u = 0$$
, $p = 0$, $\frac{\partial T}{\partial v} = 0$.

On the basis of the proposed iterative algorithm /2/, carried out numerical calculations and obtained the flow pattern for different Grashof and Reynolds numbers. It was established that at sufficiently high Reynolds number $(Re(\delta p)=500-700)$, that is, for sufficiently strong flow, caused by the pressure drop, increasing the temperature difference between the walls (eg, numbers $Gr=5*10^5$) does not lead to a marked increase in flow rate.

- 1. Alibiev D.B., Danaev N.T., Smagulov Sh.S. Numerical solution of a heat problem with the consumption of unset flow rate // Computational technologies. Novosibirsk, 1995. -B.4. N12. –P.10-28.
- 2. Danaev N.T., Urmashev B.A. Iterative schemes for solving the auxiliary grid of Navier-Stokes equations // Journal of KSU, a series of mathematics, mechanics, computer science. − 2000. №4. P.74-78.

The work was supported by the Scientific Committee of MES RK (contract № 967 dated 02.03.2012)