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Abstract – This paper investigates stability of motion of elastic 

systems with nonlinear characteristics. Model of steady motion of 
elastic systems in the absence of oscillatory processes is considered. 
The model is based on Lyapunov stability criterion. Analysis of the 
perturbation equation is carried out by use of the partial discretization 
method. Partial discretization of the Hill equation in a class of 
generalized functions (Dirac's delta function) is employed to 
considerably simplify the Hill parametrical equation and obtain its 
quasi-analytical solutions. Efficiency of the offered method is shown 
on the example of stability of resonant oscillations of physically 
nonlinear systems. 
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I. INTRODUCTION 

This paper considers the issues of stability of motion of 
nonlinear mechanical systems and methods of their analysis 
which is of practical interest.  

Stability of motion is one of the main problems of modern 
machinery dynamics. Under the influence of large inertial 
forces and technological loadings in links of machines as a 
result of their elastic deformation, difficult oscillatory 
processes connected with modulation of frequencies and 
emergence of resonant phenomena occur. These undesirable 
processes significantly affect strength characteristics of 
separate elements, and also functionality of machines. 
Misalignment of links and their deviation from the set 
trajectories can be observed. Therefore, as well as in the 
previous works [1]-[2], steady motion of mechanical systems 
is considered as their movement in the absence of oscillatory 
processes. 

Research of stability of motion of mechanisms and 
machines depends on a choice of their dynamic model. Widely 
used model of motion of machinery elements as absolutely 
rigid, considerably narrows a framework of its application. As 
a rule, it is research of quasi-static and to resonant modes of 
motion. However, this model is only the first approximation 
for the majority of problems. 

Nonlinear dynamic models of machines taking into account 
deformability of links are of the greatest interest. In [3]-[6] 
models of machine motion were developed assuming all links 
to be elastic. Their geometrical and physical nonlinearity was 
considered. Connection between elastic displacements of links 
was considered through reactions in hinges of adjacent links. 
Nonlinearity of models can cause resonances on sub- and 
ultra-frequencies. Therefore, ensuring steady motion of system 
depends on identification and elimination of frequencies 
causing resonant vibrations from operating modes. 

Most research on stability of periodic oscillations was 
performed by use of asymptotic methods and methods of small 
parameter. They are quasi-linear and quasi-Lyapunov systems 
[7]-[9], etc. By means of Lyapunov's function at rather rigid 
restrictions on degree of nonlinearity, conditions of asymptotic 
global stability were obtained. 

Among works on research of parametrical instability of 
nonlinear mechanical systems works of S. Hayashi [10], 
A.Tondl [11], W. Szemplinska-Stupnicka [12], etc. are well-
known. In [13] questions of stability of periodic oscillations of 
a nonlinear system without restrictions on the size of its 
nonlinearity and nonautonomous terms were studied. 

The objective of this paper is performing stability analysis 
of nonlinear dynamic deformable systems for elimination of 
dangerous oscillations from operating modes. 

II. DYNAMIC MODELS  
One method for solving problems of dynamics of elastic 

systems is reducing the dimension of equations of motion by 
applying well-known methods of separation of variables and 
research of dynamic processes in nonlinear mechanical 
systems with one degree of freedom in the form: 

 
 (1) 

 

Degree of nonlinearity of the term ( , )Ф f f  relative to 
generalized function of displacements ( )f t  corresponds to 
assumptions of the model, and characterizes nonlinearity of 
elastic characteristics (geometric and physical nonlinearity) 
and dissipative forces. 

Considering stability of the periodic solution 0 ( )f t  of (1), 
we set a small deviation fδ  from its equilibrium state: 

 

0( ) ( )f t f t fδ= + . (2) 
 

Stability of the periodic solution 0 ( )f t  depends on the 
nature of the behavior of its small deviation fδ  in time, i.e. 
solution of the equation of the perturbed state of the system: 

 

00

0f f f
ff

δ δ δ
   ∂Φ ∂Φ

+ + =   ∂∂   
 


, (3) 

 
where the symbol ( )0  means that the solution 0 ( )f t  is taken 
as argument of functions. 
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If the solution fδ of (3) is limited at t →∞ , then motion of 
the system is considered to be stable. If fδ →∞  at t →∞ , by 
definition, the motion is unstable that is identical to the 
criterion of Lyapunov stability. 

Legitimacy of transition from (1) to (3) is given in work 
[10] which refers to Trefftts's research concerning properties 
of periodic solutions of equations in the form (1). Limitation 
of a solution of (1) and its asymptotic stability results in its 
frequency with the smallest period equaled or multiplied to the 
period of the external perturbing force. In [10] the Floquet 
theory was involved to study stability of the periodic solution 
of (1). 

Introduce a new variable η : 
 

0

exp 0,5 Фf
f

δ η
  ∂

= −   ∂  


. (4) 

 
Then (3) reduces to the Hill parametrical equation relative to 
the variable η . 

For the case of basic resonance 0 1 1( ) cos( )f t r r t ϕ= + Ω −  
the Hill equation is represented as: 

 

[

]

2

0 1 1 22

2

sin cos sin 2

cos 2 0,

s c s

c

d t t t
dt

t

η η θ θ θ θ

θ

+ + Ω + Ω + Ω

+ Ω =
 (5) 

 
where 0 ,θ  1 ,sθ  1 ,cθ  2 ,sθ  c2θ  are functions of frequencies, 
amplitudes, and phases of oscillations of harmonic solutions of 
(1), Ω , 1r , 1ϕ  respectively. 

Among methods of the dynamic analysis of vibrations of 
mechanical systems the methods based on creating the 
characteristic determinants specifying borders of instability 
zones of the resonant modes are widely known. For this, either 
the Floquet theory is used, as in work [10], or borders of 
instability zones are defined directly on amplitude-frequency 
characteristics, i.e. on resonant curves by means of the Routh-
Hurvitz criterion. 

Here, in contrast to the mentioned methods, the problem of 
stability of motion of system (1) based on applying the partial 
discretization method [14] to the solution of Hill's equation (5) 
is investigated. This method allows to obtain the analytical 
solution of the Hill equation characterizing the behavior of 
small perturbation fδ  in time t. 

III. PARTIAL DISCRETIZATION OF THE HILL 
EQUATION 

According to the method of partial discretization [14], the 
second term of (5) is represented discretely in a class of the 
generalized functions: 

 

2

1 0 1 12 1

2 2

0 1 1 1 1 2 1

2 1 1 1

1 ( )[( sin cos
2

sin 2 cos 2 ) ( ) ( )
( sin cos sin 2

cos 2 ) ( ) ( )] 0,

n
k k s k c k

k

s k c k k k

s k c k s k

c k k k

d t t t t
dt

t t t t t
t t t

t t t t

η θ θ θ

θ θ η δ
θ θ θ θ
θ η δ

+
=

+ + +

+ + +

+ + + Ω + Ω∑

+ Ω + Ω ⋅ −

− + Ω + Ω + Ω

+ Ω ⋅ − =

 (6) 

 
where 

( )ktη is discrete representation of function ( )tη  for the value 

of the argument ktt = ;  

1,k n=  the number of  splitting of the argument t ; 
( )kt tδ −  Dirac's delta function. 
Taking the following initial conditions: 0(0)η η= ,  

0(0)η η=   at 0t = , the solution of (6) is expressed as: 
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  (7) 

 
where ( )kH t t−  denotes Heaviside step function. 

Specifying t  discretely, we obtain a recurrent formula for 
calculation of unknown ( )tη  on k-th step of splitting of the 
argument t : 
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]2 2sin 2 cos 2 ) .s k c kt tθ θΩ + Ω

(8) 

 
In contrast to [14]-[15], where the method of partial 

discretization is applied to study of parametrical system 
oscillations, in this work it is used directly to a solution of the 
perturbation equation in terms of ( )tδ . It is possible to 
investigate stability of the state by analyzing the nature of 
behavior of ( )tδ , according to Lyapunov stability criterion. If 
the magnitude decreases with time t  (decaying process) 
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then 0fδ → , i.e. the state is stable. If the oscillatory process 
is growing then we have an unstable state. 

Efficiency of the offered method will be shown below on 
the example of stability analysis of resonant oscillations of 
physically nonlinear systems. 

IV. ANALYTICAL SOLUTION OF THE HILL 
EQUATION IN THE CASE OF PHYSICALLY 

NONLINEAR SYSTEMS 
As an example, consider the motion of physically nonlinear 

systems. Equations of motion for these systems are taken in 
the form: 
 

22
2

1 2 1 2 0 12 cos .d f df dfk k f f F F t
dt dtdt

α α + + + + = + Ω 
 

 (9) 

 
In (9) dissipative forces which are supposed to be nonlinear 

and viscous due to damping properties of physically nonlinear 
media (rubber and similar materials used as oscillation 
dampers) are taken into account. 

Physical nonlinearity of the system is characterized by an 
arbitrary angle of rotation of cross elements that corresponds 
to quadratic nonlinearity of the restoring force. 

Stability of a basic resonance is investigated. Solution of (9) 
is given by: 
 

0 1 1( ) cos( ).f t r r t ϕ= + Ω −  (10) 
 

The Hill equation in this case is represented as [6]: 
 

[

]

2

0 1 1 22

2

sin cos sin 2

cos 2 0,

s c s

c

d t t t
dt

t

η η θ θ θ θ

θ

+ + Ω + Ω + Ω
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 (11) 

 
where 
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= + Ω − Ω

= Ω

= Ω

 (12) 

 
According to the above-specified technique, under the given 

initial conditions, and by the method of partial discretization 
the analytical solution of (11)-(12) has been obtained: 
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]2 2sin 2 cos 2 ) .s k c kt tθ θΩ + Ω

(13) 

V. NUMERICAL RESULTS 
Solution (13) is a recurrent formula for discrete 

representation of the solution ( )tη  with time on k-th step of 
splitting of the argument t . By analyzing the nature of the 
behavior of ( )tη , we can judge the stability of the studied 
state. 

In this paper numerical analysis of the behavior of 
( )tη giving a representation of the behavior of a small 

variation fδ with time is realized. 
Calculations were done for the parameters of the system 

1 2 1 2 0 10.2; 0.1; 5; 0.5; 5; 50.k k F Fα α= = = = = =  Step of 
discretization was accepted as t∆ =0.05.  

Stability of the solution (13) was studied by putting on 
amplitude-frequency characteristics of a basic resonance 
(Fig.1, curve 2) three frequency areas in to-resonant, resonant 
and post-resonant modes of oscillations. 

It is established that both to-resonant and post-resonant 
modes of oscillations are decaying (Fig. 2, Fig.3) that does not 
contradict the physical sense of the phenomena investigated. 
In a zone of resonant frequencies growth of oscillation 
amplitude is obtained that means the process is instable 
(Fig.4). 

Here, as well as in [16] where research on stability analysis 
of motion of geometrically nonlinear systems was conducted 
by method of partial discretization, research results correspond 
well to graphs of amplitude-frequency characteristics of a 
system basic resonance (Fig.1).   

Thus, application of the partial discretization method to 
studying stability of oscillations allows to obtain the analytical 
solution and determine zones of stable and unstable system 
oscillations. Selection of corresponding geometrical and 
physical parameters of the elastic system by means of their 
variation will help to avoid undesirable resonant phenomena 
in operating system modes. 
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Fig. 1  amplitude-frequency characteristics of a basic 

resonance at  
2 11; 10Fα = = (curve 1), 2 10.5; 50Fα = = (curve 2) 

 

 
 

Fig. 2  behavior of the physically nonlinear system in the to-
resonant zone of oscillations at 0.5, 1.5rΩ = =  

 

 
 
Fig. 3  behavior of the physically nonlinear system in the post-

resonant zone of oscillations at 7.26, 0.15rΩ = =  
 

 
 

Fig. 4  behavior of the physically nonlinear system in the 
resonant zone of oscillations at 1.8, 8rΩ = =  

 

CONCLUSION 
In this work, according to the offered criterion of dynamic 

stability of elastic systems, stability of motion of nonlinear 
mechanical systems and methods of their analysis have been 
considered. 

Steady motion of nonlinear systems is considered as their 
movement in the absence of oscillatory processes. These 
requirements are identical to determining of Lyapunov 
stability. Therefore, the technique of stability analysis of 
nonlinear systems is based on the analysis of solutions for 
perturbation equations. As a method for solution to the 
problem, the partial discretization method is offered. The 
essence of this method consists in discretization of variable 
coefficients of the Hill equation in a class of the generalized 
functions. The solution of the Hill equation is considerably 
simplified by identifying its variable coefficients as constants 
on each step of discretization. The obtained analytical solution 
of the perturbation equation is a recurrent formula for 
calculation of oscillation amplitudes. It allows to predict 
parametrical instability of resonant modes of motion of 
nonlinear systems. Efficiency of the used method is shown on 
the example of physically nonlinear systems. Research results 
correspond well to the known results obtained by other 
methods. 
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