STUDY OF ELASTIC SCATTERING OF PROTONS FROM¹⁴N NUCLEI AT ENERGIES NEAR THE COULOMB BARRIER.

N.Burtebayev¹, D.M. Zazulin¹, Zh.K. Kerimkulov¹, M.Baktybayev¹,

N. Amangeldy^{1,2}, D.K. Alimov^{1,3}, Y.S. Mukhamejanov^{1,3}, D.M. Janseitov^{1,2}, M.Nassurlla^{1,3}, D.Sairanbayev^{1,3}.

¹Institute of Nuclear Physics of the Republic Kazakhstan, Almaty, Kazakhstan, ² L.N. Gumilyov Eurasian National University, Astana, Kazakhstan, ³ Al-Farabi Kazakh National University, Almaty, Kazakhstan

The purpose of this study is experimental and theoretical study of the elastic scattering of protons from ¹⁴N nuclei at energies close to the Coulomb barrier.

Experiments were carried out on a linear accelerator UKP-2-1 at INP (Almaty). The accelerated protons energies were 700-1100 keV. Measurements of the differential scattering cross sections were made in the angular range of 20°-170° in laboratory system. The particles were detected by silicon detectors with sensitive layer 200 microns thick. The employed targets were thin films made of titanium nitride with thickness of 60-70 μ g/cm². Thicknesses of targets were defined with a accuracy within 5%. In general, the absolute error of the data does not exceed 10%. As an example, the cross sections for elastic scattering of protons from ¹⁴N nuclei at energies 990 and 1100 keV are shown on figure 1.

The experimental data were analyzed within the framework of standard phenomenological optical model and semi-microscopic folding model.

Figure 1. Differential cross sections for elastic scattering of protons by nitrogen nuclei (Ep= 990 keV and 1100 kev)