ӘЛ-ФАРАБИ атындағы ҚАЗАҚ ҰЛТТЫҚ УНИВЕРСИТЕТІ

ҚАЗАҚСТАН ШӨЛДЕРІНДЕГІ ЕГІНШІЛІК-МАЛ ШАРУАШЫЛЫҒЫ ҚОҒАМДАРЫНЫҢ АРАСЫНДАҒЫ ЕЖЕЛГІ ЖЕРДІ ПАЙДАЛАНУДЫҢ ОРНЫҚТЫЛЫҒЫ

Монография

ӘОЖ 94 (574) КБЖ 63.3 (5Қаз) Қ 18

> Монография әл-Фараби атындағы ҚазҰУ Тарих факультетінің Ғылыми Кеңесінде (Хаттама №2, 25.09.2022), талқыланып ұсынылған

«AP08856696 — Қазақстанның шөлді атыраптарының егіншілік-малшаруашылық ландшафтарын этнографиялық және геоархеологиялық зерттеу: игеру мен бос қалдырулардың тарихи себептері» іргелі жоба қаражаты есебінен жарық көрді

Пікір берушілер:

Аманжол ҚАЛЫШ – тарих ғылымдарының докторы, профессор, Ерлан ТҰРҒЫНБАЕВ – тарих ғылымдарының кандидаты, до цент

Редакциялық алқа:

Қартаева Т. (*ғылыми жетекші*), Ренато Сала, Деом Жан-Марк, Майкл Спейт, Терекбаева Ж.М., Баудиярова Қ.Б., Бейсегулова А.Қ., Сапатаев С.А., Есенаманова А.С., Осмонали Б.Б., Құсманғазинов Ә.Б., Алтынбекова Э.К., Тынайкулова М.Е.

К 18 Қазақстан шөлдеріндегі егіншілік-мал шаруашылығы қоғамдарының арасындағы ежелгі жерді пайдаланудың орнықтылығы. Кітап 1. / Сала Ренато, Деом Жан Марк, Картаева Т.Е., Терекбаева Ж.М., Баудиярова Қ.Б., Бейсегулова А.Қ., Сапатаев С.А., Есенаманова А.С., Осмонали Б.Б., Құсманғазинов Ә. – Алматы: «Арыс» баспасы, 2023. – 368 б.

ISBN 978-601-291-593-8

Ғылыми кітапта геоархеолог, палеоботаник, этнограф ғалымдардың Шу-Іле, Солтүстік Балхаш, Сырдария-Арал өңірінің егіншілік-мал шаруашылығы ланшафттарында жүргізілген зерттеулері негізінде жазылған еңбектер берілді. Дәстүрлі мал шаруашылығы, егіншілік, қосалқы кәсіп түрлерінен, табиғатты дәстүрлі игеру, табиғат пен ғаламға қатысты білімдер мен дағдылар жүйесінен мәлімет беретін деректер дәстүрлі қазақ қоғамының келбетін қазіргі кезеңдегі тұрмыс тіршілікпен салыстыруға негіз болады. Сырдария – Арал өңіріндегі жүргізілген этнографиялық экспедиция барысында «дерек беруші кісілерден» жиналған мәліметтер негізінде «жолжазба күнделігі» жасалды. Этноэкспедиция фотоальбомы зерттеу аймағындағы далалық этнографиялық ескерткіштер және дәстүрлі шаруашылық, кәсіп түрлерінің сақталуымен таныстырады.

Ғылыми кітап археолог, этнограф, өлкетанушы ғалымдарға, музей және ескерткіштерді қорғау бағытындағы қызметкерлерге, әлеуметтану-гуманитарлық бағыттардағы жас ғалымдарға арналған.

ӘОЖ 94 (574) КБЖ 63.3 (5Қаз)

[©] Әл-Фараби атындағы ҚазҰУ, 2023

КІРІСПЕ

Ғылыми ортаға және оқырманға жол тартып отырған «Қазақстан шөлдерінің егіншілік-малшаруашылық қоғамдары арасындағы ежелгі жерді пайдаланудың тұрақтылығы» атты ғылыми кітап «Қазақстанның шөлді атыраптарының егіншілік-малшаруашылық ландшафтарын этнографиялық және геоархеологиялық зерттеу: игеру мен бос қалдырулардың тарихи себептері» атты іргелі ғылыми жоба барысында жүргізілген жұмыстар негізінде жинақталды. Зерттеу жұмысы 2020 жылдың қазан – 2022 жылдың қазан айы аралығын қамтыды. Бұл іргелі зерттеу жобасы соңғы 2000 жыл ішінде Қазақстанның оңтүстік өңірлерінің орта шөл аймақтарының бойлық белдеуі бойында орналасқан екі үлкен атырабының және қоршаған шөлдердің мәдени ландшафтарының эволюциясын, ондағы агро-қалалық, мал шаруашылығы, егіншілік, дәстүрлі қосалқы кәсіптердің қызметін зерттеуге бағытталды. Зерттеу кезінде жасақталған этно-археологиялық деректердің балама жұмысы байырғы мерзімдік қоныстарды қараусыз қалдырулардың немесе тастап кетулерінің кезеңдеріне түсінік береді. Зерттеу барысында Қазақстанның орта шөлді аймағында орналасқан, яғни соңғы 2000 жыл ішінде біртіндеп игерілген және бүгінде мүлдем қараусыз қалған кейбір ірі агро-қоныстық аудандардың (мыс., Дариялықтақыр, Арысқұм, Қызылқұмның кей бөліктері) мәдени ландшафттары мен жерді пайдалану тұрақтылығына зерттеу жүргізіліп, олардың антропогендік және табиғи күштерге бейімділігіне сараптау жасалды.

Зерттеу жұмысының географиясы келесідей аймақтарды қамтыды:

- Сырдария атырауының Қуандария өзенінің орталық ағысы және оның Аралға дейінгі Қызылқұм шөлдері мен Қарақұмдағы байырғы маусымдық қоныстар, жайылымдары;
- Шу өзенінің төменгі батыс бұрылысынан 100 км бойындағы шөл атырабы, олардың Мойынқұм шөлінің оңтүстік-шығысы, Шу-Іле аймағындағы, Солтүстік Балқаштағы байырғы маусымдық қоныстар, жайылымдары.

Зерттеу барысында келесідей ғылыми жұмыстар жүргізілді:

- Таңдалған аудандардың қазіргі және палео-географиялық, физикалық және экологиялық ерекшеліктерін картаға енгізу және сипаттау, негізгі сіл-

теме ретінде мәдени ландшафт элементтерін түсіндіру: аудандардың қазіргі төрт экожүйесінің ерекшеліктері: өзен жағасы (тоғай, қамысты алқап), өзен бойы (шабындықтары бар қоныстар, суармалы алқаптар, елді мекендер), шөл (тақыр, саз, құм), шөпті өсімдікті қыратты немесе таулы шөл бедері; атыраулық және шөлді аудандардың климаттық кезеңдерін (құрғақ, жаңбырлы), гидрологиялық кезеңдерді (қоршау, жағалау шөгінділері), кейінгі Голоцен кезіндегі атырау ағынын қайта бағыттау және топырақ-өсімдік өзгерістерін, қажетті баяндамаларды оқу және палеопроксиялық (көлдегі су деңгейі, тұздылығы, стратиграфиясы, топырақ, палинологиялық спектрлер) 14 с және OSL мерзімдеу зертханалық талдау үлгілерін жинау арқылы палеоэкологиялық жағынан қайта құру;

- Агроқалалық және ауылдық нысаналарға қатысты археологиялық ескерткіштер мен этнографиялық есептік жазбалардың деректер базасын түгендеу, соның ішінде қызмет түрлері мен жыл мезгілі бойынша жерді ерекше немесе бірлесіп пайдалану аймақтарын жіктеу: жер бетіндегі зерттеулерден жерленген құрылымдарға дейінгі адам іс-әрекет іздерінің археологиялық жазбалары және әдеттегі элементтерге функционалды талдау; этнографиялық деректер туралы мәліметтер базасын құру, этностатистика (мемлекеттік және ұлттық архивтердегі басқа да сандық деректер) және этнографиялық деректерді жинақтау мақсатында «дерек кісілер» тобынан сұхбаттар алу, оны жүйелеу, ғылыми өңдеу;
- Екі зерттеу нысанасының аудандарының табиғи және мәдени-ландшафтық экожүйелерінің жіктелуі: табиғи ландшафтардың жіктелуі жер бедерінің, ылғалдылықтың және өсімдіктерді есепке алуға негізделген геологиялық өлшемдерге сәйкес келеді (Қазақ КСР атласы 1982, 78-79-кесте); мәдени ландшафтардың жіктелуі ескерткіштердің деректер базасын қамтиды және ЮНЕСКО критерийлерін басшылыққа алады; геоархеолог ғалымдардың (Сала Ренато, Деом Жан-Марк, Майкл Спейт) геологиялық және мәдени тәсілдерді біріктіретін ландшафтық жіктеу бағытындағы зерттеулері оларға кеңістіктік және уақытша өлшеудің тақырыптық карталарының сериясын әзірлеуге мүмкіндік берді.
- Зерттеу нысанына алған агро-қоныстық кешендердің палеоэкологиясына геоархеологиялық зерттеулер және тарихи дәуірлердегі мерзімдік қоныстарды иемдену үдеріне этнографиялық зерттеулер барысында стратиграфиялық, гранулометриялық, палинологиялық, палеонтологиялық зертханалық талдаулар үшін үлгілер жиналды;
- Агро-қалалық және мал шаруашылығы қызметінің өзара іс-әрекеті нәтижесінде жер мен ландшафтты пайдаланудың тарихи дамуы, зерттеу нысанына алынған атыраптарды түпкілікті қайта құруға алынған палео-этно-экологиялық, геоархеологиялық және этнографиялық ақпарат негізінде жүргізілді.

Шу-Іле, Қаратау тауларының мәдени ландшафтары, Солтүстік Балхаш, Сырдария-Арал өңірінің құмды, шөлді алқаптарындағы агро-қалалық, ауылдық елді мекендерді геархеологиялық, этноархеологиялық, этнографиялық тұрғыда пәнаралық бағытта кешенді зерттеу ғылымда жаңашыл көзқарастар қалыптастырады.

Археологиялық ескерткіштерді пәнаралық тәсілді пайдалана отырып және ескерткіштерді мәдени ландшафттың бір бөлігі ретінде қарастыра зерттеу 70 жыл бұрын Арал маңындағы С.П. Толстов (Толстов 1948; Толстов 1962; Андрианов, Глушко, 1991; Галиева 2002) басқарған күрделі экспедицияның бастамасымен басталды.

Қуаңдария, Қызылқұм-Арал маңы, Қарақұм аудандарына келетін болсақ, Қуаңдария атырабтарының Жетіасар мәдениеті қанағаттанарлықтай зерттелінді (Толстов 1948; Толстов 1962; Левина, 1995; Левина 1996). Оның жергілікті және типологиялық аспектілері бойынша ежелгі суару жүйелерін зерттеуге мамандандырылған археологтардың арасында (Андрианов 1969, Грошев 1996), суармалы жерлерді сандық қайта құру және суды пайдалану тек Оңтүстік Аралдың екі аймағына, яғни Ақшадария (Амудария сағасы) палеоканалы және Жаңадария (Сырдария сағасы) үшін ғана жасалған. Шу-Мойынқұм аудандарына келетін болсақ, Шу өзенінің батыс бұрылысындағы бұрынғы ірі суармалы және кенттенген аймақтың шығыс бөлігі туралы (бүгінгі күні құрғақ және XX ғасырдың басында Шу өзенінің оңтүстікке бағытталған ағысы қараусыз қалдырылған) мәліметттер геоархеологиялық тұрғыдан толық дерек бермейді, Шу-Іле жайылымдары ішінара осы жобаға қатысқан геоархеологтармен зерттелінген, ал Мойынқұм шөлі ешқашан геоархеологиялық зерттелмеген және құжатталған емес (Свод памятников истории и культуры Республики Казахстан. Жамбульская область, 2002; Археологическая карта Казахстана, 1960, 37 парақ/тізім; Елеуов, 1987).

Қайта құру кезеңінен кейін, жоғарыда аталған авторларының басқаруымен болған геоархеологиялық тәсіл, Қазақстанның кейбір аса маңызды археологиялық кешендерін (Отырар, Сауран, Іле атыраптары, Шу-Іле петроглифтік кешендері) зерттеу үшін осы жобаның геоархеологтары арқылы жүйелі түрде қабылданды; және оны қолданудың алдын алу моделі біртіндеп жақсартылып, толық мүмкіндіктер шеңбері кеңейтілді.

Аралға дейінгі темір дәуіріндегі қалалық қоғамдарды С.П. Толстов, әсіресе Б.И. Вайнберг (Толстов 1948; Толстов 1962; Ваинберг, 1999) белгілі экономикалық және этнографиялық концепцияларды зерттеуде қолданған; және ортағасырлық суару әдістері мен мерзімдік жайылымдық қоныстарға көшіпқонуды ұйымдастыру, көш жолдарының бағыттарының тарихи реконструкциясын жасау үшін этнографиялық модельдер қолданылды. Бұл зерттеулер аймақтың жалпы және географиялық ерекшеліктерін анықтағанымен, ай-

мақтағы тұрақты және маусымдық тұрғылықты жерлердің айырмашылығын жайында толық мәлімет бермейді.

Зерттеу тобының геархеологиялық отряды Қуаңдария және Шу кешендерінің суарылатын және ауылдық интербелсенді ландшафттарында жұмыс жасады және ол суармалы алқаптардың беткі қабатын және ықтималды өнімін сонымен қатар тарихи дәуірлердегі халық пен төрт түлік малдың тұрақтылығын есептеуді көздеді. Геоархеологтар ежелгі Отырар мен Сауранның суландыру желілерін (Сала, Деом 2008, Кларкет, т.б. 2010) гидрологиялық инженерлердің есептеу әдістерін қолдана отырып және пәнаралық байланыстағы ғалымдарының тәжірибесін ескере отырып (гидрогеологтар, палеоботаниктер, агрономдар зерттеуде), бейімділігімен тиімділіктерін бағалай отырып, судың қол жетімділігін, каналдардың лайлануын, егістіктердің тұздануын, мал жаю және т.б. жағдайда қоршаған ортаның осалдығын бағалау мақсатында жұмыс жасады.

Зерттеудің өзіндік ерекшелігі - бұл алдымен олардың туған жеріндегі әлеуметтік-экономикалық үрдістердің қарастырылуы. Бұл ерте темір дәуіріндегі Қуаңдарияда және төменгі Шу алқабында ерте ортағасырлық кезеңдерде сексеуіл даласы мен Құрманымқұм палео-атыраптарының кенттенуі, Жетісар мәдениеті негізіндегі Қазақстанның ерте кенттенуінің дамуы елді мекендік қоныстардың дамуы тамырында жатыр.

Біз зерттеу нысанына алып отырған Арал маңы-Қарақұм шөлі, төменгі Шу-Іле алқабының шөлді атыраулары және Мойынқұм шөлінің оңтүстік-шығыс бөлігі сияқты кейбір үлкен аумақтар тек геологиялық зерттеулер нысанасы болған, осы өңірді палеоэкологиялық, геоархеологиялық және этнографиялық мәселелерін ескере отырып зерттеу кенже қалған.

Қуаңдария атырауы 100х50 км² аумақты алып жатқан, Қуаңдария орталық агроқалалық аймақ ағынынан және Аралға дейінгі Қарақұм белдеуіндегі (30.000 км²) қосымша маусымды жайылымдардан және Қызылқұмның аз бөлігінен тұрады. Бұл Қазақстандағы ауыл шаруашылықты және агроқаланы игерудің екінші кезеңіндегі (Жетісар мәдениеті, б.з.д. ІІ – б.з.д. VІІІ ғ.) отаны болды, ол бір мыңжылдық тыныштықтан кейін, қарақалпақ кезеңі (б.з.д. XVІІІ ғ.), қазақ (б.з.д. ХІХ ғ.) және кеңестік кезеңдерден кейін қайта игерілді. Көбінесе ортағасырлық тіршілік ету ортасы гидрологиялық себептерге табиғи (климаттың өзгеруі, тұндыру) және антропогендік күштеуге (өзен арналарын толтыру және қайта бағыттау, тұздану, басқарудың жеткіліксіздігі, ағынды суларды алу) байланысты күйреді.

Күзеу және қыстау тұрақты түрде Сырдария атырауы мен Қызылқұм шөлінің үлкен кеңістігін алып жатты; көктем кезінде малдың 80% Аралға дейінгі Қарақұмға мезгілімен жіберіліп отырды; бірақ, жаз мезгілінде малдың көп бөлігі қазақ жерінің орталық бөлігі, батысы, солтүстік-батысында

шоғырланған жайылымға келетін болатын (МКЗ. Сыр-Дарьинская область. Перовский уезд, 1912; МКЗ. Сыр-Дарьинская область. Казалинский уезд, 1913).

Шу өзенінің төменгі ағысы бойының батыс бұрылысынан кейінгі шөлді атыраулар шығыста Құрманықұм палео-атырауынан және көрші Сексеуіл даласынан басталады және батысқа қарай Қырыққазық және Сарыөзек (Байтал) аудандарына дейін өрбиді. Өңір Оғыз-Қараханидтер (б.з.д. VIII-XII ғ.) кезеңінде қалаға айналып және жоңғар (б.з.д. XVII-XVIII ғ.), қазақ (б.з.д. XIX ғ.) және кеңес кезеңдерінде ұзақ немесе қысқа үзілістерден кейін қайта қоныстандырылды. 1915 жылы бұл агро-қоныстық аудан Шу өзенінің төменгі ағысы бойындағы аймағындағы халық көп мекендеген тұрақ болды, халқы 22400 адамды құрады (тығыздығы 5,5 адам/км²), оның ішінде 4000 үй шаруашылығы (әр отбасына 6 адам). Отырықшы мал шаруашылығы, көшпелі мал шаруашылығымен қатар дамып отырды. Шу алқабының (Сексеуілді даласы) оң жақ атыраптарында күздеу, қыстау және көктеу жайылымдары алып жатса, Шу-Іле тауларының 15%-н көктемгі және жазғы жайылымдар алып жатты. Жаздың ең тиімді кезеңінде малшылардың көпшілігі мал отарын Шу мен Талас өзенінің аңғарларындағы Мойынқұмның оңтүстік-шығысындағы үлкен жайылымдарда өсірді (МКЗ. Реки Чу и низовьев реки Таласа Черняевского и Аулиеатинского уездов Сырдаринской области, 1915).

Кейінгі орта ғасырлық тарихи кезеңде экологиялық және саяси факторлар әр түрлі тарихи үдерістерге әсер етті: XVIII ғасырда қалған жоңғар агроқалалық құрылымдарының әскери-саяси күйреуі байқалды; XIX ғасырдың соңында Шу өзенінің ағысының оңтүстікке қарай ауысуына байланысты бұрынғы тиімді малшаруашылық орта және сексеуіл даласын қыстық жайылымға пайдалану қолданыстан шыға бастады; осы өңірде қоныстан Ұлы жүздің Дулат және Жалайыр тайпаларының, Орта жүздің Арғын тайпаларының ішкі миграциялық ағымында өзгерістер байқалды.

Шу-Іле, Солтүстік Балқаш, Мойынқұм құмдары, Сыр-Арал құмдары, соның ішінде Қызылқұм, Қарақұм, Дариялықтақыр, Арысқұм геархеология, этноархеологиялық және этнографиялық ескерткіштердің сақталуымен ерекшеленелі.

Figure 1. Satellite map of the eastern part of the Syr Darya delta. Lines: Blue – Syr Darya delta and Sarysu active channels; Azure - dry paleodistributaries. Colored dots: archaeological monuments of different chronological periods. Names: Blue – river courses; Brown – geological features; Black – towns and villages. Square frame: Telikol-Aschikol lacustrine landscape. Orange lines and rectangles: track and sites of the 2018 survey.

showing the 3 Quaternary stages of delta formation (white lines): 1 – filling of the Kyzylorda depression (Middle Pleistocene); 2 – Ancient Syr Darya delta distributaries directed SW and W towards the Aral Sea basin (Post-glacial and Early -Mid Holocene); 3 – modern Lower Syr Darya course and Kazalinsk delta (Late Holocene). Framed scheme: cross-section of the Syr Darya delta on the latitudinal transect Kyzylorda-Aral Sea with 'Kelteminar' sediments (in yellow) and 'Yaxartes' sediments (orange), both above the Cretaceous layers of the Kyzylorda depression (gray) (modified from Borovskiy and Pogrebinskiy, 1958).

Sala Renato, Deom Jean-Marc

THE ARID REGIONS OF DARYALYK TAKYR AND TELIKOL: ETHNO-GEOARCHAEOLOGICAL STUDY OF A STRATEGIC TRANSHUMANCE RANGELAND ON THE RIGHT BANK OF THE SYR DARYA DELTA

CONTENTS

Introduction

- 1 Geographical-environmental features and geological history of the right bank of the Syr Darya delta
 - 2 Materials and methods
 - 2.1 Archival documentation
 - 2.1.1 Environmental characteristics
 - 2.1.2 Archaeological context
 - 2.1.3 Historical context
- 2.1.4 Ethnographic and statistical data on land and water use (late 19th–early 20th century AD)
 - 2.2 Archaeological fieldwork
 - 2.3 Remote sensing
 - 3 Results
 - 3.1 Paleohydrology of the Daryalyk Takyr plain
 - 3.2 Archaeological findings in the Daryalyk Takyr and Telikol regions
 - 3.3 Ethnographic monuments of the cultural landscape of the Telikol region
 - 3.4 Ethnographic statistical data
 - 4 Discussion
- 4.1 Human occupation of the Daryalyk Takyr and Telikol regions from the Mongols to the Russian conquest (1221–1850)
 - 4.2 Colonization of the Telikol region under the Russian empire (1850–1917)
 - 4.3 The Transhumance Model

Conclusions

References

INTRODUCTION

The left side of the Syr Darya river delta in Kazakhstan has been substantially researched, first by the Khorezmian Archaeological-Ethnographic Expeditions (KAEE) led by S. Tolstov (1937–97) (Tolstov, 1962; Levina, 2000) and subsequently by Kazakh and international expeditions during more recent years (Kurmankulov and Utubayev, 2017; Arzhantseva and Tazhekeyev, 2014; Baipakov *et al.* 2012; Bonora, 2019). Conversely, the right side of the delta, constituting a huge area of 100x200 km adjoining the Daryalyk Takyr desert, remains largely unexplored.

Archaeological studies in the Syr Darya delta began at the end 19th century with the recording of several large historical towns (Lerkh, 1870; Kallaur, 1901), but it was not until the multidisciplinary research of the KAEE that extensive past human occupation was discovered in the ancient deltas of the South and East Aral region. These expeditions developed from their initial geographical focus in the core of 'Ancient Khorezm' on both banks of the lower Amu Darya (1937–41, 1945–91) and were expanded into the Syr Darya delta (1946–97) for reconstructing the prehistory and history of the agro-pastoral urban centers of the region. Hundreds of sites and monuments from the Neolithic to modern (1500–1945 AD) periods were documented and excavated (Arzhantseva, 2015).

The KAEE did not concern the right bank of the lower Syr Darya river (Vainberg, 1997: 31), where 5 ancient towns surrounding Signak (dated 6th-18th century AD) had been known since the early 20th century, and where over the last 30 years Kazakh archaeologists have documented 20 sites mostly located in the alluvial plain (Svod, 2007). While the Daryalyk Takyr desert itself lacks any published archaeological reports (AKK, 1960; Svod..., 2007), two leading researchers from the last phase of the KAEE (1976–97) devoted to the study of the Zhetyasar monuments (3rd century BC-9th century AD) on the left bank of the Syr Darya delta, considered the Daryalyk Takyr to have played two major roles in supporting the left-bank Syr Darya urban centers (Levina, 1996; Vainberg, 1999). The first possible role was as water supply in the form of a huge lake, possibly larger than the Aral Sea that filled twice during historical times: in the Iron Age (~200-1 BC) feeding the Eski-Daryalyk and the Zhetyasar towns, and in the medieval period (~900–1100 AD) supporting the development of a regional urban complex (Vainberg, 1997; Levina and Galieva, 1995: 5). The second role was as vital transit point for the Syrdarya delta agro-pastoral population during their seasonal transhumance towards the summer rangelands of central and northern Kazakhstan (Vainberg, 1999).

Given the importance of these hypotheses and the current lack of empirical data, two goals motivated our research: a) to survey the Daryalyk Takyr in order to assess its potential water discharge during the late Holocene; b) to identify the existence and chronology of archaeological sites. The survey took place during 2018, comprising the geoarchaeological study of the area located between the Syr Darya in the south and the final courses of the Chu and Sarysu rivers in the north (Fig. 1). The research took place in three stages: 1) analysis and tentative reconstruction of geological, hydrological and environmental processes; 2) analysis of our geoarchaeological fieldwork; 3) synthesis of archaeological data, historical sources and ethnographic reports concerning land use in the region.

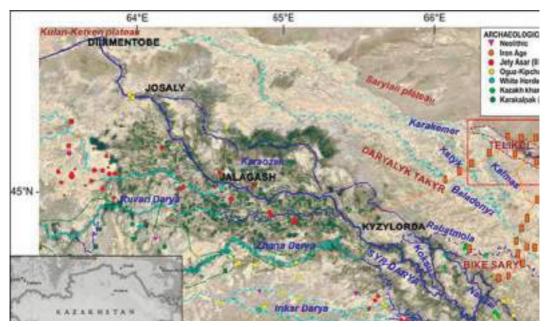


Figure 1. Satellite map of the eastern part of the Syr Darya delta. Lines: Blue – Syr Darya delta and Sarysu active channels; Azure – dry paleo-distributaries. Colored dots: archaeological monuments of different chronological periods. Names: Blue – river courses; Brown – geological features; Black – towns and villages. Square frame: Telikol-Aschikol lacustrine landscape.

Orange lines and rectangles: track and sites of the 2018 survey.

GEOGRAPHICAL-ENVIRONMENTAL FEATURES AND GEOLOGICAL HISTORY OF THE RIGHT BANK OF THE SYR DARYA DELTA

The northeastern part of the Syrdarya delta is a desertic plain covering a total area of 19,050 km² (around 25% of the entire area of the Syr Darya delta) and crossed by Syr Darya right-bank paleochannels. The paleochannel heads span from Tomenaryk village in the SE (where the first large relict branch departs northwards from the Syr Darya riverbed along the tract of the modern Telikol canal) to Diirmentobe in the NW (where the Sydarya river turns west after being joined by the last relict branches of the Chu-Sarysu river system) (Fig. 1). Their course slopes to the NW for 130 km in the east to 70 km in the west until the terminal Sarysu river until an elevation difference of -10 m.

This huge area can be divided into 3 regions:

1. The right-bank floodplain of the modern Syr Darya river (5,000 km²), a 230 km long by 30 km wide moist band between Tomenaryk and Josaly, crossed by intermittently active paleochannels and lacustrine systems, from E to W: Shieli, Nansai, Koksu, Karaozek, the latter representing the largest spill. This right floodplain played a significant hydrological role, with discharges antinomic to phases of desiccation in the left floodplain; and also a historical role as testified by the documentation of 25 medieval settle-ments within its boundary (Svod..., 2007).

2. The desiccated alluvial plain of Daryalyk Takyr (13,200 km²), an almost totally flat relief with a slope of 0.3% from the limits of the Syr Darya floodplain (140–133 m asl) to the final Telikol river course (126 m asl). The plain is divided into two sub-regions: a) the Daryalyk Takyr proper (11,000 km²), developing SE to NW as a large flat desert made of sand and clay and covered by scarce vegetation; b) the southeastern and eastern-northeastern peripheries of the plain, i.e. two areas with more abundant moisture and shrub vegetation due to its proximity and ephemeral floods from the Syr Darya, respectively: the Bike Sary steppe (2,200 km²) crossed by higher dune formations, the Kalmas and Baladonyz paleochannels, and the Telikol canal (Fig. 1, Fig. 2a). Considering the proclivity of the lower Syr Darya course to spill through its right paleo-distributaries and the settlement patterns associated with their activation, Sala (2019) hypothesizes a flood from the right bank of the Syr Darya delta into the Daryalyk Takyr plain during the medieval period, which was responsible for the reduction of most of the residual Syr Darya river stock (21.1 km3), the establishment here of a lacustrine landscape, and a significant regression of the Aral Sea.

Figure 2. a – Daryalyk Takyr desert plain south of the Baladonyz paleochannel: view to W of a takyr from the top of sand ridges. b – Telikol lacustrine landscape: Sorkol lake, view to N.

3. The lacustrine landscape of Aschykol lake to the east (200 km², Chu river basin) and Telikol lake to the west (650 km², Sarysu river basin), created by the Chu and Sarysu deltas. The Aschykol lake is partially supplied by the Chu river system, but primarily by the Boktykaryn left distributary of the Sarysu river. The Telikol lake [Telikol is a Turkic toponym made of two words, Teli, meaning 'young bull feeding on two cows' and kol, meaning 'lake', indicating that the lake is fed by the waters of two river systems, Sarysu and Chu (Yerofeyeva, 2014: 388)] is separated from Aschykol by an 8 km wide strip of land

devoid of modern surface flow between the two lakes and extends further west through the ephemeral Karakemer channel along the foot of the Cretaceous Sarylan plateau. The importance of the two lakes resides in the fact that they represent relatively vegetation-rich habitats that, from Late Neolithic to modern times, have been the object of transhumant pastoralist activities, as indicated by archaeological findings (Rogozhinskii, 2017) and ethnographic accounts (Mukanov, 1991; MKZ, 1912). Shallow and salty during most of the year, the lakes fill up from the beginning of April, reaching maximum water level in May, and retaining fresh water until August, after which they become quickly salinized. Throughout history only a few farmers with a small number of livestock could spend the summer season in Telikol, occasionally using the high water period for irrigation (MKZ, 1912) (Fig. 2b).

Figure 3. Relief map of the Syr Darya delta showing the 3 Quaternary stages of delta formation (white lines): 1 – filling of the Kyzylorda depression (Middle Pleistocene); 2 – Ancient Syr Darya delta distributaries directed SW and W towards the Aral Sea basin (Post-glacial and Early – Mid Holocene); 3 – modern Lower Syr Darya course and Kazalinsk delta (Late Holocene). Framed scheme: cross-section of the Syr Darya delta on the latitudinal transect Kyzylorda-Aral Sea with 'Kelteminar' sediments (in yellow) and 'Yaxartes' sediments (orange), both above the Cretaceous layers of the Kyzylorda depression (gray) (modified from Borovskiy and Pogrebinskiy, 1958).

The modern **climate** of the region, according to the Köppen classification, is cold desert climate (BWk). In Telikol (Zlikha station), the average annual temperature is 8.54 °C (January -10.3, July 26.4), average precipitation 185 (max. April 31 mm, min. September 0.8 mm), continentality index 36.7, aridity index 4.0 (WBCS, 2020).

From SW to NE, the **vegetation** cover changes in three steps: from tugai forest and meadows along the banks of the Syr Darya to reeds, shrubs and halophytes near lacustrine depressions at the desert borders; saxaul shrubs further north and almost barren areas in the clayish and sandy desert of central Daryalyk Takyr; and again shrub and reed groves

around the moister final Sarysu course and Telikol lake (Natsional'nyy atlas respubliki Kazakhstan, 2010).

The local **fauna** is typical of the northern deserts of Central Asia: agama lizard, snake (four-lined snake), gerbil and jerboa, tolai hare, saiga antelope, goitered gazelle (jairan), corsac fox and wolf; in the Telikol region, are found migratory birds (pelican, flamingo, cormorant, heron, stork, little and black-necked grebe, ducks) together with wild boar (Gubin and Levin, 2017); in the larger Telikol lakes fish like carp, pike, perch, crucian carp, catfish (Brockhaus-Efron, 1901).

The desert environment is only exploitable by humans through hunting or nomadic stockbreeding, but is very vulnerable to precipitation changes, inducing sharp variations in pastoralist opportunities and transhumance patterns at the millennial and decennial scale (Kerven *et al.*, 2021).

Scientific research on the geological evolution of our study area began with N.A. Severtsov who crossed the Daryalyk Takyr in 1857 and recognized the alluvial origin of the plain (Severtsov, 1947). He was followed in 1888 by Y.A Schmidt who assumed that a mighty flow resulting from the confluence of the three rivers may have once been running "till the outskirts of the city of Perovsk [pres-ent- day Kyzylorda] into the Syr Darya river" (Shmidt, 1894: 37). S.S Neustruev undertook the first detailed research of the region, in particular on the formation of takyrs, in the context of its environmental characterization for the census of 1910 (Neustruev, 1911; MKZ, 1912). In 1927–33, the region was studied by D.I. Yakovlev who documented the resurgences of the Chu artesian basin across the Daryalyk Takyr towards the Aral Sea (Yakovlev, 1941).

Although lacking any absolute chronology, the study of the hydrological history of the Syr Darya delta has been attempted several times. I.P. Gerasimov, in the frame of the Cenozoic history of the Turan depression (Gerasimov, 1937), reconstructed the history of the Syr Darya delta in 3 phases: Early Pleistocene, when the Syr Darya merged with the Amu Darya, together discharging into the Caspian Sea; Middle Pleistocene when it crossed the newly formed sand deserts of the Kyzylkum and Daryalyk Takyr; and Late Pleistocene, when the rivers Chu, Sarysu and Syr Darya converged as a large delta discharging in the Aral Sea.

This scenario was reassessed by B.A. Fedorovich who similarly dated the first phase to the turn of the Tertiary and Quaternary periods and the third phase to the Late Quaternary when the Syr Darya, after reaching the Kyzy lorda region, twisted southwestward to the southeastern corner of the Aral Sea through the Zhana Darya channel (from which the name of the 'Zhana Darya' epoch). This third phase was followed by two further stages: a post-glacial stage when the Syr Darya course moved northward and reached the Aral Sea through the Kuvan Darya (Late Khvalynian, 20–10 ka BC, named the 'Kuvan Darya' epoch); and the Holocene stage when the Syr Darya moved further north, breaking the Cretaceous sediments of the Kulan-Ketken plateau and, turning west, formed the mod-ern Kazalinsk delta (Fedorovich, 1952).

A more detailed hydrological reconstruction of the second and third phases was provided by B.M. Borovskiy and M.A. Pogrebinskiy, based on stratigraphic data resulting from a series of deep boreholes in the Syr Darya basin (Borovskiy and Pogrebinskiy, 1958).

According to the authors, the Middle–Late Pleistocene history of the Syr Darya delta can be divided in two periods, called Kelteminar and Yaxartes, characterized by different geological formations The Kelteminar formation started during the Middle Pleistocene and developed in 2 stages. The first stage corresponds to the progressive filling of the Kyzylorda depression (depth of 60–80 m) with alluvial sediments from the Syr Darya, Chu and Sarysu rivers: the time required for filling the cavity might have taken around 56 ka. The second stage occurred when the Syr Darya, after filling the Kyzylorda depression, began forming a delta and reached the Aral Sea through a long phase of alluvial deposition. Based on the modern runoff of the Syr Darya, the time interval necessary to accumulate the sands of the Kelteminar delta has been estimated at around 200 ka (Borovskiy and Pogrebinskiy, 1958: 19).

The Yaxartes formation started around 20 ka BP with the simultaneous activation, in differing degrees, of several deltaic branches, among which a diagonal distributary to the northernmost paleo-Kazalinsk delta (Tolstov, 1962; Andrianov, 1969). The delta complex might have reached maximum discharge during the Atlantic period, after which Borovskiy and Pogrebinskiy, considering the relative stability of the climate and available runoff during the Late Holocene, attribute the successive south-to-north phases of aggradation and desiccation of the main deltaic distributaries (Inkar Darya, Zhana Darya, Kuvan Darya, Eski Daryalik, modern Syr Darya) to be the result of both drying natural trends and anthropogenic pressure from agro-urban activities upstream (Borovskiy and Pogrebinskiy, 1958: 26–27).

The cutting of the modern Syr Darya course across the Kulan-Ketken plateau (Fig. 1) and the formation of the modern Kazalinsk delta are events attributed by the authors to the last 2000 years.

MATERIALS AND METHODS

Our research involved three phases of work: 1 – desk-based survey of all available data concerning our study area: topography, environmental and paleoenvironmental contexts, archaeological background, and history of land and water use from historical and ethnographic materials; 2 – fieldwork; 3 – data analysis and synthesis of datasets, including remote sensing analysis of the elements of the cultural landscape and comparison between archaeological and ethnographic data.

Archival documentation

Environmental characteristics

We first incorporated modern topographic data in a GIS (MapInfo) (Soviet military maps, 1984–85), and georeferenced historical maps in order to reveal hydrogeomorphic and cultural changes during modern times. If 19th and early 20th century maps (Karta 1848; 1910; 1919) did not indi-cate significant changes in the environmental settings, we used 18th

century maps (Truskot, 1772; Schraembl, 1792; Pansner, 1816). Although less accurate, these older maps revealed that the Telikol lake was once much larger, probably testifying to a more pluvial phase. Thematic layers were then added: Geological maps at two scales (Geological maps SSSR, 1966, 1979); maps of Quaternary deposits, geomorphology, soil, vegetation and landscape at larger scale (Natsional'nyy atlas respubliki Kazakhstan, 2010). Relief maps were produced with Global Mapper on the base of satellite land cover data and Aster GDEM at 1-arc-sec-ond resolutions for terrain analysis (Fig. 3).

All the cartographic material was then analyzed, synthesizing the available information on historical geography, relief, hydrology, climate, soil and vegetation for our study area. Our spatial data were supplemented by additional information on Quaternary sediments and stratigraphy (Borovskiy and Pogrebinskiy, 1958; Nikiforova, 1960), hydrogeology (Yakovlev, 1941), and the original fieldwork reports about the area compiled before the 1940s (Neustruev, 1911; Spiridonov, 1922; Pavlov, 1931). Detailed climatic data were obtained from the Bioclimatic Classification System of S. Rivas-Martinez (WBCS, 2020) and from ar-chival data of the meteorological station Zlikha in Telikol (1951–2020, Pogodaiklimat, 2020). Paleoenvironmental proxies previously reconstructed for the Holocene climate of the Aral Sea basin were used as background of the present study (Sala, 2019; Sorrel *et al.*, 2007; Krivonogov *et al.*, 2014).

Archaeological context

To the same GIS platform, we imported all the available data on archaeological sites from national (AKK, 1960) and provincial (Svod..., 2007; GSPIKMZ -KO, 2020) inventories. This information was previously systemized and analyzed during the study of the urbanization of the Syr Darya valley (Sala, 2012), and now supplemented with archaeological data more recent and from adjacent regions.

Historical context

We compiled historical sources for the pre-Mongol time (2nd century BC–13th century AD) (Barthold, 1963, 1965; Agazhanov, 1969), the Golden Horde and Timurid periods (Klyashtornyi and Sultanov, 1992; Abuseitova and Baranova, 2001) and the Uzbek and Kazakh Khanates (Sultanov, 1982; MKKh, 1969). Accounts relating to the Russian exploration of the region (IKRI, 2005, 2007), early scientific reports, and protocols of land use arbitration (Mukanov, 1991) were also used as historical documents.

Ethnographic and statistical data on land and water use (late 19th – early 20th century AD)

Significant to our present research are some statistical data concerning the pastoralist tribes of the Syr Darya delta, particularly details regarding their socio-economic structure and migratory strategies. These data suggest a model of environmental and social interactions that can be employed in the reconstruction of earlier phases (Vainberg, 1999). The data are provided through statistical accounts collected in 1910 and compiled in the

'Materialy po kirgizskomu zemlepol'zovaniyu' [Materials on Kyrgyz (*Kazakh*) land use] (hereafter abbreviated MKZ) (MKZ, 1912). Information included in MKZ is based on a demographic and economic census performed by a team of statisticians belonging to the 'Russian Tsarist Department of Population Resettlement' of the 'Directorate of Land Management and Agriculture'. Their goal was to quantify the amount of land required by the Kazakh population for its sustainable development, in order to calculate the land surplus that could be used by Russian colonists. The tables, organized by districts, communities and economic classes, contain information on the local population, including family composition, clan and hierarchical relations, environment and water supply, residency and mobility, occupation and economic dependence, ownership in terms of livestock, arable land and socioeconomic services.

This statistical compilation identified in the Perovsk county four residential districts:

- the right bank of the Syr Darya (from Tomenaryk to Josaly);
- the left bank of the Syr Darya including the upper course of the Kuvan Darya;
- southwestern Karatau (from Besaryk to Tomenaryk);
- the Telikol district consisting of the Telikol-Aschykol lacustrine landscape (Fig. 1).

In terms of economy, the first three districts were agro-pastoralist semi-nomadic, while the latter was pastoral nomadic. The rest of the Perovsk county, including Daryalyk Takyr, was land of common use.

Archaeological fieldwork

The fieldwork survey of Daryalyk Takyr and Telikol occurred in October 2018 with the goal of building a chronology of the human occupation of the region. The main strategy was to investigate sites attested by maps as previously populated areas, characterized by the remains of wells, houses and cemeteries.

The survey occurred along three transects intersecting the paleochannels and the lake system:

- diagonally, across the Daryalyk Takyr plain surrounding the Kyzylorda-Zhezkazgan road;
- meridionally, across the eastern part of the plain, from the Telikol lake in the north to the Nansai channel of the Syr Darya floodplain in the south;
 - latitudinally, along the full length of the Telikol region (Fig. 1).

The survey was performed by a team of 5 people walking transects from a central feature (usually a well), recording environmental features, surface finds of artefacts (potsherds, lithics, metal), preserved structures (e.g. house, animal pen) and burials.

All finds were recorded by GPS and described in paper notebooks; and the results were then imported into a database and quantified (Excel). Extensive prospection was followed by a more detailed survey of loci with high concentration of finds and, in that case, by sampling and collection of diagnostic artefacts (those giving chronological information from ornamentation, fabric, shape etc.). In Telikol, given the abundance of ethnographic material, only older artefacts (~2%) were collected while modern finds were only recorded and photographed.

Remote sensing

Remote sensing material consisted of Landsat 7 (ETM+) images treated in false -color through ENVI for vegetation and moisture analyses as well as good resolution surface images (Bing, Google). Satellite images were used for analyzing the extent of wet areas during maximum flood periods (MODIS, 2002–2005) and early spring snowmelt accumulation (NASA EO, 2004) and, most significantly, for quantifying the cultural features (house, yurt, field, well etc.) in our study area. They also supported the planning of the survey itinerary by providing information on the present conditions of tracks, bridges and flooded areas. Satellite images were imported in MapInfo and all cultural landscape monuments were recorded and quantified.

RESULTS

Paleohydrology of the Daryalyk Takyr plain

With regard to the contribution of the Chu and Sarysu rivers to the hydrology and relief of the Daryalyk Takyr, it has been postulated that within this plain "obviously in antiquity and probably again during the Middle Ages, was located a lake fed by the water of the rivers Syr Darya (part of its flow), Sarysu and Chu. It is not excluded that it could represent the lake noticed by ancient and medieval Chinese maps and mentioned by medieval Muslim travelers (...). If at a certain time existed such a lake and not, as now, just a chain of lakes formed by the Chu and Sarysu deltas, then it could maximally enclose the territory of the Quaternary sediments in the right bank " (Vainberg 1997: 31). This assumption was based on the assessment that the Eski Daryalyk paleochannel supplying the western Zhetyasar towns (500 BC–800 AD) could have come from the east of the modern Syr Darya course but, in any case, in absence of right spills from the lower Syr Darya, no farther east than the Karaozek lake system.

In fact, for Borovskiy and Pogrebinskiy, "the assumption of a former, much greater than now, high discharge of the river Chu cannot be considered solid (...); if it ever reached the Syr Darya during the formation of the Kelteminar delta, then it was probably a small river, many times smaller than the Syr Darya. The valley of the river Sarysu is very narrow and corresponds approximately to its modern scanty river flow: it is difficult to assume that in the past it could exist an arena for the activity of a much more powerful and deep river flow than its modern discharge" (Borovskiy and Pogrebinskiy 1958: 18). Besides, after the filling of the Kyzylorda depression and the accumulation of alluvial deposits from the Syr Darya to the Daryalyk Takyr plain, the Sarysu and Chu rivers were gradually pushed back to their present position (Borovskiy and Pogrebinskiy, 1958: 23).

However, on the Daryalyk Takyr surface are detected traces of several parallel paleochannels departing from the right bank of the Syr Darya in the SE-NW direction, and large enough to erode and cut preexisting perpendicular elongated dune ridges 10 m high deposited by NE- SW winds. Besides the grayish color of paleo-courses and dark color

of sand ridges, are detected 2 intermediate levels of relief: white flat areas of takyrs and, 0.5–1 m above them, brownish slightly inclined deposits from eroded sand ridges (Borovskiy and Pogrebinskiy, 1958: 64). Traces of the erosion of paleo- courses are sometimes covered again by subsequent sand deposits, which could be dated by OSL to fix an upper chronology of the flood event.

During the exceptional pluvial phase at the end of the 19th century (1886–1909), such triple confluence might have reached a maximum discharge (Panyuskina *et al.*, 2018), being that at that time in Telikol are documented spring floods high enough to submerge most of the lake depressions and to feed the Karakemer ephemeral stream till its merging with the Syr Darya course at the level of Diirmentobe (Neustruev, 1911; Spiridonov, 1922).

Archaeological findings in the Daryalyk Takyr and Telikol regions

In the analysis of the archaeological findings of the Daryalyk Takyr (13,200 km²) and Telikol (850 km²) regions five periods have been identified: Late Neolithic, Bronze Age, Early Iron Age, Medieval and Modern (ethnographic Kazakh). The two regions are treated separately due to their great difference in size and moisture availability, Telikol being 15 times smaller and much wetter.

The survey of the *Daryalyk Takyr* covered 15 out of the total 50 sites estimated in the region and recorded around 310 diagnostic artefacts (Fig. 4). The densest clusters of surface finds (65% of the total) are located at takyr edges in the eastern part of the plain, in particular along the moister paleochannels of Kalmas and Baladonyz (Fig. 1). Most of the finds consist of potsherds and microliths. Among the stone tools (25%), some probably pre-date the Bronze Age; while among the ceramics the majority belong to the Bronze Age (42%, 1/4 of which with incised decoration typical of the Fedorovo-Alakul tradition) and lower percentages from the Iron Age (9%) and Middle Ages (24%). Finds from the modern period are very poorly represented by few artefacts. Only in the southern part of the desert, closer to wetter areas (Bike Sary steppe), do medieval and modern artefacts become more abundant.

The largely dominant ratio of lithic material and pot-sherds ascribed to a period from the Late Neolithic to the Bronze Age possibly indicates moister conditions in the region during these earliest phases. However, cultural factors such as a more localized use of pastures, a more settled way of life, and the importance of hunting among early herders could also explain denser occupation. Such a pre-ponderance of Late Neolithic and Bronze Age artefacts is also observed in other arid rangelands of Kazakhstan, for example the Ili delta (Deom *et al.*, 2019) and the Ryn sands of the Northern Caspian region (Ivanov and Vasiley, 1995).

The lower ratio of Iron Age and medieval finds in Daryalik Takyr indicates that later agro-pastoral communities became gradually engaged in long-distance transhumance with seasonal camps, using the desiccated plain as a transit point, as documented in the Late Modern period.

The survey of the *Telikol* region covered 10 out of its estimated total 30 sites and recorded 41 pre-ethnographic diagnostic artefacts (Fig. 5) mainly concentrated around