
 

 
Abstract—This paper is devoted to the two-phase Stefan   

problem with the irregular diving boundary of the region. We 
consider a two-dimensional heat equation with two known 
boundary conditions in one at the left-hand-side and the other 
at the right-hand-side. We construct the Green’s function in a 
dihedral angle for the heat equation with the coupled 
conditions on the fixed known boundary of division two-
phases. Then, using this defined Green’s function and its 
properties, we obtain integral representatives of the 
temperature distributions and the low of motion of the diving 
boundary.  Uniqueness and regularity of the constructed 
analytic solution with the diving boundary have been proved in 
the weighted Sobolev space.  
 

Index Terms—Green’s function with irregular boundary, 
two-phase Stefan problem, motion of the diving boundary 
 

I. INTRODUCTION 

 he two-phase Stefan  problem consists of determining  

a temperature field and the low of motion of the 

diving boundary separating the two phases. It describes a 

solidification process involving various physical 

phenomena, including conduction with phase change which 

is characterized by a moving interface separating two phases 

and the two-phase heat and mass transfer process. We will 

start with solving the heat equation, which governs the 

temperature distribution in the liquid and the solid phases. 

The unknowns are the two temperature distributions and the 

position of an interface between the phases (free boundary).  

 The description of the moving interface problem includes 

the heat transfer equations for each phase with 

corresponding initial and boundary conditions which should 

be specified in each phase as well as on the interface. We 

have considered the weak formulation of the two-phase 

Stefan problem and presented the analytical method of 

solution in the dihedral angle. The classical solutions of the 

two dimensional two-phase Stefan problem are not expected 

to exist for all domains [1]. An investigation of the coupled 

problems for the heat conduction equation with irregular 

boundary showed that the Stefan problem can’t be solved in 

the functional space with a regular metric in the dihedral 

angle. This fact motivates the study of the weak solutions in 
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the weighted Sobolev space. For the numerical solution of 

the Stefan problem traditionally are used Galerkin methods 

which combined with suitable explicit Runge-Kutta time 

stepping schemes or the implicit Euler method for the 

temporal discretization. Linearized formulation of the Stefan 

problem is possible, if we consider the problem in a small 

interval of time t ∈ [0; T], assuming that the unknown 

boundary changes during this time slightly. 

    The mathematical theory of the local solvability for the 

one-phase Stefan   problem for the one-dimensional heat 

equation on a small time interval was considered by 

A.M.Meirmanov [1], E.I.Hanzava [2], B.V.Basalii [4], E.V. 

Radcevich [5]. The existence theorem for a parabolic 

equation in a small time period was proven by 

A.M.Meirmanov. The solution was obtained by using the 

auxiliary "regularized" tasks. The obtained estimates for the 

solutions of the auxiliary problems allowed one to get the 

compactness of the solution in the space )1,2(C . The Green's 

function in the dihedral angle for the heat equation was built 

in the Holder space by V.A Solonnikov and E.V.Frolovova 

[3]. These results are used to prove the solvability of 

boundary value problems for the heat equation in a dihedral 

angle. 

The objective of this paper is to develop a similar theory 

and construct an analytical solution for the two-phase Stefan   

problem in the dihedral angle.  The construction of the 

analytical solution for the two-dimensional two-phase 

Stefan problem will be based on the Green’s function for the 

temperature distribution in the two phases in a domain with 

a fixed boundary. The properties and features of the 

constructed Green’s function are essentially provided 

existence and uniqueness of the temperature field and the 

law of motion of the dividing boundary for the two-

dimensional two-phase Stefan   problem. This result gives 

some general properties and features for the temperature 

distributions and the law of motion of the irregular dividing 

boundary. 

II. THE WEIGHTED SOBOLEV SPACES 

    Let ),0( TD T   be measurable function 

            ),0(),(),(,0 10 Ttrtrr    

with boundary 
 
where ),(),,( 10 trtr  are known 

curves. In domain  TD  the solution of the heat equation 
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can be unlimited in irregular the point 0r . The irregular 

boundary is not sufficient to deal with the classical solution. 

We can come across initial-boundary value problems for 

parabolic equations whose domain is disturbed in the sense 

that some singularity appears. It is necessary to introduce 

the notion of weak derivatives and to work in the Sobolev 

spaces. Then we can ensure the correct behavior of 

solutions and represent their features in the weighted 

Sobolev spaces. In this case, the weighted Sobolev space is 

the best context allowing us to develop our work.  

    Let L QT ( )  be the Banach space of measurable function 

QT    with weighted norm             
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     We could remark that there are many possibilities to 

define an extension of the Sobolev spaces. 

III. THE STATEMENT OF THE PROBLEM 

    Let us recall the setting the two-phase two dimensional 
Stefan problems in domain   ),0(21 TDDD T  , where 

        
 1 0, 0 ( , )D r r t     ,  2 10, ( , )D r r t       

are an open and smooth bounded domain with boundaries 

2211 ,   DD ,there surface
TГ   0, ( , )r r t     is 

unknown boundary ,  0,01   r  ,  12 ,0   r  are 

known boundary for 
0 10 2      

Constant 0 is an angle between the x-axis and the 

tangential curve  ( , )r t  . 
   The two-phase Stefan problem is stated as follows: to find 
 the unknown surface  

TГ  for 0t  and the temperature                   

TDtru ),,(    which satisfies the heat equation 
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There ( , )r t  is unknown function of the diving boundary; 

q  ,  - are respectively the hidden heat and  density of 

crystallization or melting.  
   We  assume  that  the  initial  temperature  satisfies  the 
following conditions:       
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IV. GREEN FUNCTION FOR THE HEAT EQUATION                 

WITH FIXED KNOWN BOUNDARY 

    In this part we consider the two-phase two dimensional 
initial boundary value problem for heat equation in 
domain   ),0(21 TT  , where 

 01 0,0   r ,  102 ,0   r  
are an open  with boundaries 

2211 ,   . 

There  0,0   r  is known boundary.  

There  0,01   r ,  12 ,0   r  for 
0 10 2     .  

    Let us formulate the initial boundary value problem for 
heat equation: to find the temperature 

TDxtru ),,,(   

satisfying the relations:  
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on the known boundary (coupled conditions) 
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 The two-phase initial boundary value problem (7)-(11) is 
concerned with the fundamental solution for the heat 
equation. Fundamental solution of the heat equation is 
considered and many of its properties are consequence of 
the constructed Green's function. Particular attention will be 
to integral representation with their initial values for the 
two-phase initial boundary value problem. 

 Using transformations [4]  : Laplace for t , Henkel for r  

and Fourier  for   we constructed  the Green's function for 

the first initial boundary value problem for the heat equation 
in a dihedral plane angle which are obtained as: 
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Solution of the initial-boundary value problems for the heat 

equation (6) is obtained in the integral forms of heat 
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The solution of the initial-boundary value problems (7)-(11) 

correctly are solved in the functional space with a weighted 

integral metric and established a priori estimates in the 
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where C is independent constant from  ii fu ,0  and t.

 V. CONSTRICTION OF THE TEMPERATURE FIELD AND 

BOUNDARY OF THE PHASE TRANSITION 
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   These integral representations for the problem (1) - (5) 
in the form of heat potentials are satisfied initial and 
boundary conditions (2)-(3) and the first Stefan condition. 
Using the second Stefan conditions we get equation for 
motion of the diving boundary for two-phase Stefan   
problem 

     22
2 1

2 2

( , ) ( , ) 1 ( , )
( , ) 0

r t r t r t
r t

t r r r r

   
   

       
 

with   coefficient     
                             2 2

2 1 1 2 2

1 22 ( )

к а к а

к к q


 





 

Having  been satisfied   in each area head  operators 

 
2 2

2
2 2 2

1 1
i iL a

t r r r r 
    

           
the integral representations for the problem (1) - (5) can 
determine as  the Volterra and Fredholm integral equations 
of the second  kind.  

  


||
111

0

|
111

),(

0

1

0

1 ),,,,,(),,(),,(
1




dtrrHrrdrdtr
rt

 

),,(),,,,,(),,( 1
||

112

0

|
121

),(

1

0

1

trFdtrrHrrdrd
r

t






  


 

1( , )
| | |

2 1 1 1 1 21 1

0 0 0

( , , ) ( , , ) ( , , , , )
rt

r t d dr r r H r r t d
 

         


      

),,(),,,,,(),,( 2
||

122

0

|
121

),(

1

0

1

trFdtrrHrrdrd
r

t






  


 

Here  

 
 
 
(1

1) 

| ( ) |
1 1 1

1

( , , , , ) ( , , ) ( , , ) ( , , )n
ij ij in jn

n

H r r t h r r t r t r t   




    

| ( ) |
1 1 1

1

( , , , , ) ( , , ) ( , , ) ( , , )n
ij ij in jn

n

H r r t h r r t r t r t   




  
( )

( ) ( ) ( ) ( )
1 1 1( , , ) ( , , ) ( , , )

n
n n n n m i

m i m m i m

G
h r r t d r r t G c r r t

r


 


 

 
22

( ) ( ) 2
1 0 2

( , , ) ( , )n mmn mn
m md r r t L r t a

r


 

               

      ( ) 2
1( , , ) 2n m n

m mc r r t a
r




  


       

        
 

2
( ) 2
0 2

1m
mL a

t r r r

   
         

1( , )
| | |

1 01 1 11 1 1

0 0

( , , ) ( , ) ( , , , , )
r

F r t u r G r r t dr d
 

    


  
 

+
1

1

| | |
0 2 1 1 2 1 1

0 ( , )

( , ) ( , , , , )
r

u r G r r t d r d


 

   


   

1( , )
| | |

1 1 1 11 1

0 0 0

( , , ) ( , , , , )
rt

d dr f r G r r t d
 

      


    
 

+
1

1

| | |
1 2 1 12 1

0 0 ( , )

( , , ) ( , , , , )
t

r

d dr f r G r r t d


 

      


       

|

|
2 1 1 1

1 1 1 1|
0 0 0

( , , , , )
2 ( , )

t G r r t
a d Р r d r



  






 
   

 

-
|

1

|
2 1 2 1

1 2 1 1|
0 0

( , , , , )
2 ( , )

t G r r t
a d Р r d r

 

  






 
  

       

 
|1

1

| |
1 11 1 12 1 1

( , )
0 0

( , ) ( , , , , ) ( , , , , )
t

r
d K r G r r t G r r t dr   
      



      +                       

 
|1

1

| |
1 11 1 12 1 1

( , )
0 0

( , ) ( , , , , ) ( , , , , )
t

r
d K r G r r t G r r t dr   
      



    

1( , )
| | |

2 01 1 21 1 1

0 0

( , , ) ( , ) ( , , , , )
r

F r t u r G r r t dr d
 

    


    

 +
1

1

| | |
0 2 1 2 2 1 1

0 ( , )

( , ) ( , , , , )
r

u r G r r t d r d


 

   


   

1( , )
| | |

1 1 1 21 1

0 0 0

( , , ) ( , , , , )
rt

d dr f r G r r t d
 

      


      

 +
1

1

| | |
1 2 1 22 1

0 0 ( , )

( , , ) ( , , , , )
t

r

d dr f r G r r t d


 

      


   
 

   |

|
2 2 1 1

1 1 1 1|
0 0 0

( , , , , )
2 ( , )

t G r r t
a d Р r d r



  






 
   

  - 

      
|

1

|
2 22 1

1 2 1 1|
0 0

( , , , , )
2 ( , )

t G r r t
a d Р r dr

 

  






 
   

 
 

  
 

|1
1

| |
1 21 1 22 1 1

( , )
0 0

( , ) ( , , , , ) ( , , , , )
t

r
d K r G r r t G r r t dr   
      



    

 

    
| ( ) |

1 1 1 1 1
1

( , , , , ) ( , , ) ( , , ) ( , , )n
ij ij n n

n

H r r t h r r t r t r t   




  

  Solution of the Volterra and Fredholm integral equations of 
the second  kind can obtained analytically, using  integral 
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B         is the Betta function. 

       Estimation for the kernel of the Volterra – Fredholm 
matrix integral equations of the second  kind is obtained   
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Resolvent of the integral equation has estimation 
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0 0,M b   are   the positive constants which  depend on the  

certain coordinates of moving boundaries. 
  The existence and uniqueness of solution the Volterra–

Fredholm integral equations can be proved by the estimation 
(12).The representation of the exact solution of the 
Volterra–Fredholm matrix integral equations of the second 
kind is defined in the reproducing kernel space

TD .  
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VI. STATEMENT OF THE MAIN RESULT 
 

Theorem 2. Let 0l  be integer number, 0  is real 
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Stefan problem (1) - (5) and motion of the diving boundary  
( , )r t  is defined as function: 
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q  ,  - are respectively the hidden heat and density of 

crystallization or melting per unit mass of the solid. 
Moreover, ),,( tru  the following estimate holds 
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There C is constant which is independent from pfu ,,0  

and  t.  ),(
1
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 is the operator 
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VII. CONCLUSION 

    Experimental selection of cooling or heating parameters 
for the thermal regimes is costly and not always feasible 
process what is a starting point to consider the two-phase 
Stefan problem in the weak formulation, therefore important 
argument for research is to find an analytical solution. We 

have presented the analytic method of weak solution for the 
two-phase Stefan   problem which expected to exist for all 
domain. This method analytic based on constructing Green's 
function and is required a good deal using the heat potential 
theory. For unknown two independent thermodynamically 
parameters (the temperature and the phase function) Green’s 
function has played a key role in the obtained integral 
representation of the temperature field and the description of 
behavior of the phase transition temperature distribution.   
There are the main points  that temperature field would 
satisfy the heat equation with their initial-boundary 
condition and  the phase of diving boundary satisfies the 
law on the free boundary (the Stefan conditions) and   they 
obtained equation of motion of the diving boundary deliver 
full information of the behavior for the phase change 
boundary. There the main mathematical difficulty associates 
the construction of the corresponding Green’s function and 
motion of the diving boundary. Using a priori estimates we 
obtain an uniqueness and regularity of the weak solution of 
the two-phase Stefan   problem. We take the first step in 
developing our analytical method for solving free boundary 
problem where each area of heat and mass transfer with 
moving boundaries are need in the constriction own Green's 
function of the model coupled task with the initial and fixed 
boundary conditions.       
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