Registration form

Name, Surname	Koshanova Aizhan Balgabaevna
University	Farabi Kazakh National University
Position	Ph Student
Course, Specialization	1 course, 8D07112 Nanomaterials and
	Nanotechnologies
Title of report	SERS SUBSTRATES BASED ON AG NPS/WO ₃
	NANOCOMPOSITE THIN FILMS
Authors	Koshanova A.B.
Supervisor	PhD, Associate Professor Mukhametkarimov Ye.S.
Specify the section in which you would	Condensed matter physics and Nanomaterials
like to participate	Science

SERS SUBSTRATES BASED ON AG NPS/WO3 NANOCOMPOSITE THIN FILMS

Koshanova A.B.

Supervisor: PhD, Associate Professor Mukhametkarimov Ye.S. Farabi Kazakh National University, Almaty, Kazakhstan

e-mail: aizhankoshanova.kz@gmail.com

The physical and chemical properties of tungsten trioxide (WO₃), in particular its high refractive index, good corrosion resistance, excellent optical modulation, and durability make this material attractive for a wide range of applications including photocatalysis [1], gas sensors [2], solar cells [3], and photoelectrochemical [4] devices. In addition, the incorporation of Ag nanoparticles (NPs) in WO₃ increases the sensitivity and selectivity of gas detection and enables detection and identification of various organic molecules using effect of localized surface plasmon resonance (LSPR) [4].

In this work, Ag NPs/WO₃ coatings were synthesized by RF magnetron co-sputtering on SQ1 quartz substrates. After the deposition process, the coatings were subjected to thermal annealing at 500°C in air for 1 min. After the annealing process, the samples were checked on activity towards Surface-Enhanced Raman Spectroscopy (SERS). SERS measurement was performed using an aqueous solution of methylene blue (MB) with a concentration of 10⁻⁶ M.

The surface morphology of the synthesized Ag NPs/WO₃ films before and after annealing was studied by atomic force microscopy (AFM). AFM image of annealed Ag NPs/WO₃ film (Fig.1b) showed that the average diameter of Ag NPs is about 30-50 nm.

The SERS spectra (Fig.1a) of MB consist of several peaks at 450, 773, 1401 and 1628 cm⁻¹, which correspond to different vibration modes of MB molecule [5]. The most intense Raman signal was registered when using annealed Ag NPs/WO₃ substrate as compared to as-deposited film (before annealing).

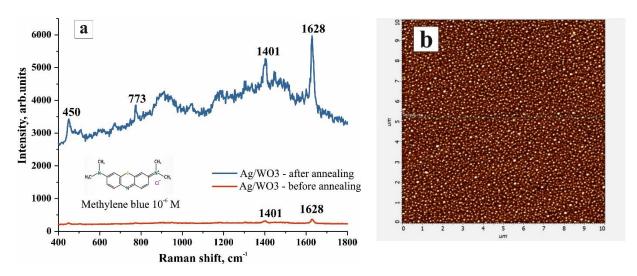


Fig. 1. – Raman spectrum of Methylene blue 10⁻⁶ M (a) and AFM image of Ag NPs/WO₃ after annealing (b)

References

- 1.Löfbeg, A. J. Catal. 2000, 189, 170-183.
- 2.Cai, Z. Sens. Actuators B Chem. 2015, 219, 346–353.
- 3. Zhang, J.C. J. Solid State Chem. 2016, 238, 223-228.
- 4. Granqvist, C.G. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262.
- 5. Roy, S.D. J. Ram. Spectr. 2015,46, 451–461.