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1 Introduction
Conditions for the existence of solutions of systems of integro-differential equations and bounda-
ry-value problems for these systems are considered in [8, 9]. A general theory for these systems
is developed and effective methods for solving them are proposed. In this paper, we study the
x-parametric family of nonlinear boundary-value problems for integro-differential equations

∂V

∂t
= f

(
x, t, ψ(t) +

x∫
0

V (ξ, t) dξ, V

)
, V ∈ Rn, (x, t) ∈ [0, ω]× [0, T ], (1.1)

g
(
x, V (x, 0), V (x, T )

)
= 0, x ∈ [0, ω], (1.2)

where the functions f : [0, ω]× [0, T ]× R2n → Rn and g : [0, ω]× Rn × Rn → Rn are continuous.
Our study is based on the parametrization method [10, 12] proposed by Dzhumabaev. The

parametrization method was developed to various boundary-value problems for some types of dif-
ferential equations [2, 13, 15], such that Fredholm integro-differential equations [3–7, 17], delay dif-
ferential equations [16], hyperbolic equations [1, 14] etc. The application of this method made it
possible to derive the solvability conditions for the above problems.

This approach can also be applied to study the nonlinear nonlocal boundary value problem for
the system of partial differential equations (m = 1, 2, . . . )

∂m+1u

∂t∂xm
= f

(
x, t,

∂m−1u

∂xm−1
,
∂mu

∂xm

)
, u ∈ Rn, (x, t) ∈ [0, ω]× (0, T ),

∂ku

∂xk

∣∣∣
x=0

= ψk(t), t ∈ [0, T ], k = 0, 1, . . . ,m− 1,

g

(
x,
∂mu(x, t)

∂xm

∣∣∣
t=0

,
∂mu(x, t)

∂xm

∣∣∣
t=T

)
= 0.

Therefore, the study of problem (1.1), (1.2) is of interest from the point of view of its application
to nonlocal boundary value problems for a class of partial differential equations.

In the present paper, we propose a modified algorithm of the parametrization method for finding
an isolated solution of problem (1.1), (1.2) and derive sufficient conditions for the existence of such
a solution.
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2 Setting of the problem and the main results
We consider the nonlinear nonlocal boundary value problem (1.1), (1.2) for the x-parametric family
of integro-differential equations.

A solution of problem (1.1), (1.2) is a function V (x, t) ∈ C([0, ω] × [0, T ]Rn), which is contin-
uously differentiable on [0, T ] (at fixed x ∈ [0, ω]) and satisfies the system of integro-differential
equations (1.1) and the boundary conditions (1.2).

We take h > 0, Nh = T (N ∈ N), and make the partition [0, ω] × [0, T ) =
N⋃
r=1

Ωr, where

Ωr = [0, ω]× [(r − 1)h, rh), r = 1, N .
We will use the following notations.

- C([0, ω],Rn(N+1)) is the space of systems of functions λ(x) = (λ1(x), λ2(x), . . . , λN+1(x)) with
the norm

∥λ∥1 = max
x∈[0,ω]

max
r=1,(N+1)

∥λr(x)∥,

here the functions λr : [0, ω] → Rn are continuous, r = 1, (N + 1);

- C([0, ω]× [0, T ],Ωr, R
nN ) is the space of systems of functions

V [x, t] =
(
V1(x, t), V2(x, t), . . . , VN (x, t)

)
with the norm ∥∥V [ · ]

∥∥
2
= max

r=1,N
max
x∈[0,ω]

sup
t∈[tr−1,tr)

∥Vr(x, t)∥,

where the functions Vr(x, t) ∈ C(Ωr) have finite limits lim
t→tr−0

Vr(x, t) uniform in x, x ∈ [0, ω]

(r = 1, N);

The restriction of the function V (x, t) into Ωr is denoted by Vr(x, t), i.e. Vr(x, t) = V (x, t),
(x, t) ∈ Ωr, r = 1, N .

Let us set additional parameters

λr(x) = Vr(x, (r − 1)h), r = 1, N

and
λN+1(x) = lim

t→T−0
VN (x, t), x ∈ [0, ω],

and introduce the functions

Ṽr(x, t) = Vr(x, t)− λr(x) on Ωr, r = 1, N.

We then obtain the family of multipoint nonlinear boundary value problems for integro-diffe-
rential equations with parameters

∂Ṽr
∂t

= f

(
x, t, ψ(t) +

x∫
0

λr(ξ) dξ +

x∫
0

Ṽr(ξ, t) dξ, λr(x) + Ṽr

)
, (x, t) ∈ Ωr, r = 1, N, (2.1)

Ṽr(x, (r − 1)h) = 0, x ∈ [0, ω], r = 1, N, (2.2)
g
(
x, λ1(x), λN+1(x)

)
= 0, x ∈ [0, ω], (2.3)

λr(x) + lim
t→rh−0

Ṽr(x, t)− λr+1(x) = 0, x ∈ [0, ω], r = 1, N. (2.4)
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It can be easily shown that the families of problems (1.1), (1.2) and (2.1)–(2.4) are equivalent.
Suppose that for all r = 1, N + 1 and x ∈ [0, ω] the family of parameters λr(x) is known.

Then the functions Ṽr(x, t), (x, t) ∈ Ωr (r = 1, N), can be determined from the Cauchy problem
(2.1), (2.2). For a fixed x ∈ [0, ω], this problem is equivalent to the family of mixed type systems
of integral equations

Ṽr(x, t) =

t∫
(r−1)h

f

(
x, τ, ψ(t) +

x∫
0

λr(ξ) dξ +

x∫
0

Ṽr(ξ, τ) dξ, λr(x) + Ṽr(x, τ)

)
dτ, (2.5)

t ∈ [(r − 1)h, rh], r = 1, N.

By substituting the values of lim
t→rh−0

Ṽr(x, t), found from (2.5), into (2.3) and (2.4), we obtain

g
(
x, λ1(x), λN+1(x)

)
= 0,

λr(x) +

rh∫
(r−1)h

f

(
x, t, ψ(t) +

x∫
0

(
λr(ξ) + Ṽr(ξ, τ)

)
dξ, λr(x) + Ṽr(x, t)

)
dt− λr+1(x) = 0.

This is a system of nonlinear functional equations in parameters λr(x), x ∈ [0, ω], r = 1, N + 1.
We rewrite this system in the form

Q1,h

(
x, λ(x),

x∫
0

λ(ξ) dξ, Ṽ

)
= 0, λ(x) ∈ Rn(N+1), x ∈ [0, ω]. (2.6)

Condition 2.1. There exists h > 0 : Nh = T (N ∈ N), such that the family of systems of
implicit nonlinear Fredholm integral equations (2.6), where Ṽ = 0, has a solution λ(0)(x) =

(λ
(0)
1 (x), λ

(0)
2 (x), . . . , λ

(0)
N+1(x)) ∈ C([0, ω],Rn(N+1)).

Let Condition 2.1 be met. We denote the solution of the Cauchy problem (2.1), (2.2), corre-
sponding to λr(x) = λ

(0)
r (x), by Ṽ (0)

r (x, t). Let us define the function

V (0)(x, t) =

{
λ
(0)
r (x) + Ṽ

(0)
r (x, t) for (x, t) ∈ Ωr, r = 1, N,

λ
(0)
N+1(x) for (x, t) ∈ [0, ω] ∪ {T}.

We choose some numbers ρλ > 0, ρ
Ṽ
> 0, ρV > 0 and define the following sets:

S(λ(0)(x), ρλ) =
{
λ(x) ∈ C([0, ω],Rn(N+1)) : ∥λ− λ(0)∥1 < ρλ

}
,

S(Ṽ (0)(x, [t]), ρ
Ṽ
) =

{
Ṽ (x, [t]) ∈ C(Ω,Ωr,RnN ) :

∥∥(Ṽ − Ṽ (0))[ · ]
∥∥
2
< ρ

Ṽ

}
,

S(V (0)(x, t), ρV ) =
{
V (x, t) ∈ C(Ω,Rn) : max

(x,t)∈Ω
∥V (x, t)− V (0)(x, t)∥ < ρV

}
,

Gf (x, ρV ) =
{
(x, t, u, v)∈Ω× R2n : (x, t)∈Ω, ∥u− u(0)(x, t)∥<ω · ρV , ∥v − v(0)(x, t)∥<ρV

}
,

Gg(x, ρλ) =
{
(x,w1, w2) ∈ [0, ω]× R2n : ∥w1 − V (0)(x, 0)∥ < ρλ, ∥w2 − V (0)(x, T )∥ < ρλ

}
.

Condition 2.2. The function f(x, t, u, v) has uniformly continuous partial derivatives f ′u, f ′v in
Gf (x, ρu, ρv) and the following inequalities hold:

∥f ′u(x, t, u, v)∥ ≤ L1, ∥f ′v(x, t, u, v)∥ ≤ L2 ∀ (x, t, u, v) ∈ Gf (x, ρu, ρv).
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The function g(x,w1, w2) has uniformly continuous partial derivatives g′w1
, g′w2

in Gg(x, ρλ) and
the following inequalities hold:

∥g′w1
(x,w1, w2)∥ ≤ L3, ∥g′w2

(x,w1, w2)∥ ≤ L4, (x,w1, w2) ∈ Gg(x, ρλ).

Here Li (i = 1, 4) are some constants.

Let Condition 2.2 be met. We take the pair (λ(0)(x), Ṽ (0)(x, [t])) and determine the sequence
(λ(k)(x), Ṽ (k)(x, [t])), k = 1, 2, . . . , by the following algorithm.

Step 1.

(i) Find λ(1)(x) = (λ
(1)
1 (x), λ

(1)
2 (x), . . . , λ

(1)
N+1(x)) ∈ C([0, ω],Rn(N+1)) by solving the family of

systems of implicit nonlinear Fredholm integral equations (2.6), where Ṽ = Ṽ (0).

(ii) By solving the family of Cauchy problems (2.1), (2.2), where λ(x) = λ1(x), find the system
of functions Ṽ (1)(x, [t]).

(iii) Define the function

V (1)(x, t) =

{
λ
(1)
r (x) + Ṽ

(1)
r (x, t) for (x, t) ∈ Ωr, r = 1, N,

λ
(1)
N+1(x) for (x, t) ∈ [0, ω] ∪ {T}.

Step k.

(i) Find λ(k)(x) = (λ
(k)
1 (x), λ

(k)
2 (x), . . . , λ

(k)
N+1(x)) ∈ C([0, ω],Rn(N+1)) by solving the family of

systems of implicit nonlinear Fredholm integral equations (2.6), where Ṽ = Ṽ (k−1).

(ii) By solving the family of Cauchy problems (2.1), (2.2), where λ(x) = λ2(x), find the system
of functions Ṽ (2)(x, [t]).

(iii) Define the function

V (k)(x, t) =

{
λ
(k)
r (x) + Ṽ

(k)
r (x, t) for (x, t) ∈ Ωr, r = 1, N,

λ
(k)
N+1(x) for (x, t) ∈ [0, ω] ∪ {T}.

The following statement represents sufficient conditions for the existence of an isolated solution
of the family of boundary value problems with parameters (2.1)–(2.4).

Theorem 2.1. Let for some h > 0 : Nh = T (N = 1, 2, . . . ), ρλ > 0, ρ
Ṽ
> 0, ρV > 0 fulfill

Condition 2.1 and Condition 2.2 are met, the Jacobi matrix ∂Q1,h(x,w̃1,w̃2,Ṽ )
∂w̃1

has an inverse for x ∈

[0, ω] (w̃1 = λ(x), w̃2 =
x∫
0

λ(ξ) dξ) and for all (λ(x), Ṽ (x, [t])) ∈ S(λ(0)(x), ρλ)× S(Ṽ (0)(x, [t]), ρ
Ṽ
),

and let the following inequalities hold:

(1)
∥∥∥∥( ∂

∂w̃1
Q1,h

(
x, λ(x),

x∫
0

λ(ξ) dξ, Ṽ

))−1∥∥∥∥ ≤ γ1(h), x ∈ [0, ω], γ1(h) – const;

(2) q1(h) = γ1(h)e
h·γ1(h)L1ω (L1ω + L2)

2h2

1− (L1ω + L2)h
< 1;



REPORTS OF QUALITDE, Volume 3, 2024 279

(3) γ1(h)

1− q1(h)
eh·γ1(h)L1ω max

x∈[0,ω]

∥∥∥∥Q1,h

(
x, λ(0)(x),

x∫
0

λ(0)(ξ) dξ, Ṽ (0)

)∥∥∥∥ < ρλ;

(4) γ1(h)

1−q1(h)
eh·γ1(h)L1ω · (L1ω + L2)h

1− (L1ω + L2)h
max
x∈[0,ω]

∥∥∥∥Q1,h

(
x, λ(0)(x),

x∫
0

λ(0)(ξ) dξ, Ṽ (0)

)∥∥∥∥ < ρ
Ṽ

;

(5) ρλ + ρ
Ṽ
< ρV .

Then for any x ∈ [0, ω] the sequence of pairs(
λ(k)(x), Ṽ (k)(x, [t])

)
∈ S(λ(0)(x), ρλ)× S(Ṽ (0)(x, [t]), ρ

Ṽ
)

converges to (λ∗(x), Ṽ ∗(x, [t])); an isolated solution of problem (2.1)–(2.4) in S(λ(0)(x), ρλ) ×
S(Ṽ (0)(x, [t]), ρ

Ṽ
). Moreover, the following estimates hold:

∥λ∗ − λ(0)∥1 ≤
h · γ1(h)
1− q1(h)

eh·γ1(h)L1ω (L1ω + L2)h

1− h(L1ω + L2)
max
r=1,N

K̃r,

∥Ṽ ∗ − Ṽ (0)∥2 ≤
(L1ω + L2)h

1− (L1ω + L2)h
∥λ∗ − λ(0)∥1,

where

K̃r = sup
(x,t)∈Ωr

∥∥∥∥f(x, t,
x∫

0

λ(0)r (ξ) dξ, λ(0)r (x)

)∥∥∥∥, r = 1, N.

The proof of Theorem 2.1 is based on the sequential implementation of the steps of the proposed
algorithm. To find the solution of the nonlinear operator equation with respect to the family of
parameters for each fixed x ∈ [0, ω], a sharper version of the local Hadamard theorem [12, p. 41] is
used.
Remark. The conditions of Theorem 2.1 are sufficient for the feasibility and convergence of the
proposed algorithm.

Due to the equivalence of problems (2.1)–(2.4) and problems (1.1), (1.2), the following statement
is true.

Theorem 2.2. Let for some h > 0 : Nh = T (N = 1, 2, . . . ), ρλ > 0, ρ
Ṽ
> 0 and ρV > 0 all

conditions of Theorem 2.1 are met. Then for any x ∈ [0, ω] the sequence of functions V (k)(x, t) ∈
S(V (0)(x, t), ρV ) converges to V ∗(x, t), an isolated solution of problem (1.1), (1.2) in S(V (0)(x, t), ρV )
and the following estimate holds:

max
(x,t)∈Ω

∥∥V ∗(x, t)− V (0)(x, t)
∥∥ ≤ h · γ1(h)

1− q1(h)
eh·γ1(h)L1ω h · (L1ω + L2)

(1− h(L1ω + L2))2
·K,

where

K = max
r=1,N

sup
(x,t)∈Ωr

∥∥∥∥f(x, t,
x∫

0

(V (0)(ξ, t)− V (0)(ξ, (r − 1)h)) dξ, V (0)(x, t)− V (0)(x, (r − 1)h)

)∥∥∥∥.
Theorem 2.2 is a corollary of Theorem 2.1.
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