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Abstract—The paper proposes a method for calculating Som-
merfeld integrals using the example of the problem of radiation
from a Hertz dipole. An integral representation of the dipole field
in the form of Sommerfeld integrals is given and its analytical
expression is found in the form of an infinite power series.
Qualitative and quantitative comparisons of the final results with
exact expressions for the Hertz radiator obtained directly from
integral representations in cylindrical and spherical coordinate
systems are presented. The results of the paper may be used in
the theory of diffraction and in solving the Sommerfeld problem

Index Terms—Maxwell equations, convolution, Green’s func-
tion, scattering of electromagnetic waves, Hertz dipole, Sommer-
feld integrals

I. INTRODUCTION

Sommerfeld integrals, introduced by A. Sommerfeld in

1909 [1], are used in solving problems related to wireless radio

communication over long distances since they provide an accu-

rate mathematical description of electromagnetic phenomena

[2]–[5]. Recently, they have become widely used in mathe-

matical models related to many electromagnetic technologies,

ranging from modeling electrical discharges to plasmonic

integrated devices [6]–[8]. However, numerical methods have

difficulties in accurate evaluation of Sommerfeld integrals.

This is caused by highly oscillatory and slowly converging

behavior of the integrand and its singularities, including branch

points and a pole near the real-axis path of integration. It is

generally assumed that such Sommerfeld integrals cannot be

calculated in a closed form.

Therefore, the calculation of Sommerfeld integrals has both

practical and theoretical significance since they can be used

as Green’s functions in the frame of integral equation for-

mulations. In recent years, reports on combining analytical

approximations and numerical computations have been pub-

lished [9]–[11].

In the first section, the integral representations of the

magnetic and electric fields of the Hertz point radiator are

considered using Hertz vector potentials.

In the second section, the exact analytical expressions for

the Hertz dipole fields in cylindrical and spherical coordinate

systems required in the third chapter are described.
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In the third section, on the example of the Hertz dipole, the

method for evaluating Hertz integrals is considered. The main

results of the work are presented in the conclusions.

In the second section, the integral representations of the

magnetic and electric fields of a Hertz point source are

considered, using Hertz vector potentials.

The third section describes the exact analytical expressions

for the Hertz dipole fields in cylindrical and spherical coordi-

nate systems required in the third chapter.

In the fourth section, on the example of the Hertz dipole,

the method for evaluating Hertz integrals is described.

II. INTEGRAL REPRESENTATIONS OF THE FIELDS OF A

HERTZIAN POINT DIPOLE

It is known that the potential of the Hertz vector

Π =
1

iωε0ε
J ∗ ψ, (1)

is a solution of the Helmholtz equation

(k20 +�)Π =
1

iωε0ε
J, (2)

where the symbol ∗ is the convolution over all spatial coordi-

nates, J is the current density, ψ = eik0r/r is Green’s function,

ω is the circular frequency, ε is the dielectric permittivity.

The electromagnetic field is generally defined in terms of

the Hertz vector as

H = −iωε0ε∇×Π, (3)

E = ∇×∇×Π +
1

iωε0ε
J. (4)

Note that the Hertz point dipole corresponds to the current

density (J = j)

j = −iωpδ(x)δ(y)δ(z − z0), (5)

where z0 is its location along the z axis.

Integral representation of the Hertz vector of a point electric

dipole

Π0 =
ip

4πε0ε

∞∫
0

1

κ

eiκ|z−z0|J0(kρρ)kρdkρ, (6)

κ =
√
k20 − k2ρ
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or the so-called inverse Hankel transform follows from the

Fourier inversion of the expression (1) in the cylindrical

coordinate system

Π0 =
1

iωε0ε
F−1

[
j̃ ψ̃

]
= − p

(2π)3ε0ε

∞∫
0

∞∫
−∞

2π∫
0

ei(kρρ cos kα+kz(z−z0))
kρ

k20 − k2
dkρdkzdkα.

The above integrals are calculated by means of representation

of the Bessel function as

J0(z) =
1

2π

2π∫
0

eiz cos kαdkα (7)

and application of the theory of residues on the complex plane

kz .

The integral representations of the fields of the Hertz

radiator are expressed in a similar way using the Hertz vector

in the form of Hankel transformations

Hd = −eα
pω

4π

∂

∂ρ

∞∫
0

eiκ|z−z0| 1
κ

J0(kρρ)kρdkρ =

eα
pω

4π

∞∫
0

eiκ|z−z0| kρ

κ
J1(kρρ)kρdkρ, (8)

Ed =
ip

4πε0ε1

∞∫
−∞

eiκ|z−z0|
(

eρsgn(z-z0)i
∂

∂ρ
J0(kρρ)+

ez
k2
ρ

κ
J0(kρρ)

)
kρdkρ =

−ip

4πε0ε1

∞∫
−∞

eiκ|z−z0|
(

eρsgn(z-z0)iJ1(kρρ)−

ez
kρ

κ
J0(kρρ)

)
k2ρdkρ. (9)

It is useful to represent the above integral representations

also in terms of the Hankel function (see Appendix A)

Hd = −eα
pω

8π

∂

∂ρ

∞∫
−∞

eiκ|z−z0|H(1)
0 (kρρ)

kρ
κ

dkρ =

eα
pω

8π

∞∫
−∞

eiκ|z−z0|H(1)
1 (kρρ)

k2ρ
κ

dkρ, (10)

Ed =
−ip

8πε0ε

∞∫
−∞

eiκ|z−z0|
(

eρsgn(z-z0)iH
(1)
1 (kρρ)−

ez
kρ
κ

H
(1)
0 (kρρ)

)
k2ρdkρ. (11)

Similar integrals occur in the Sommerfeld integrals, as well as

in boundary value problems.

III. EXACT FIELD FORMULAS

Using the integral representation of a spherical wave

eiκ

r
= − 1

2i

∞∫
−∞

eiκ|z−z0|H(1)
0 (kρρ)

kρ
κ

dkρ, (12)

r =
√
ρ2 + |z − z0|2,

It is not difficult to calculate the integral (10) for the magnetic

field of the Hertz radiator

Hd = eα
ipω

4π

∂

∂ρ

eik0r

r
= −eα

ωpk0
4π

eiκ

r

(
1 +

i

κ

)ρ
r
, (13)

κ = k0r, ρ = r sin θ, (14)

It should be noted that the same result can be obtained by

calculating the convolution (1) in (3)

Hd = −∇× (j ∗ ψ) = eα
ipω

4π

∂

∂ρ

eikr

r
. (15)

It is convenient to obtain an exact expression for the electric

field only by calculating the rotor of expression (13) in the

cylindrical coordinate system using equations (4) and (3)

Ed =
i

ε0εω
∇× Hd = − pk20

4πε0ε

eiκ

r

{
eρsgn(z − z0)

ρ

r

(z − z0)

r

(
1 + 3

(
i
/
κ− 1

/
κ2

))−
ez

(
ρ2

r2
−
(
2
(z − z0)

2

r2
− ρ2

r2

)(
i
/
κ− 1

/
κ2

))}
. (16)

In the spherical coordinate system, it will take the form

Ed = − pk20
4πε0ε

eiκ

r

{
eθ sin θ

(
1 + i

/
κ− 1

/
κ2

)
−

er2 cos θ
(
i
/
κ− 1

/
κ2

)}
, (17)

due to transformations of the basis vectors{
eρ = er sin θ + eθ cos θ,
ez = er cos θ − eθ sin θ.

(18)

IV. METHOD FOR CALCULATING SOMMERFELD

INTEGRALS

As an example, to demonstrate the methodology for calcu-

lating the Sommerfeld integrals, consider the electric field of

a dipole (11). Let z > z0.

Passing to the angular integration variable θ, where

kρ = k0 sin θ,

we transform expression (11) to the Sommerfeld integral along

the contour Sz (see Fig. 1)

It should be noted that to provide the convergence of the

asymptotic integral, the integration contour Sz in (19) must

be deformed to a line passing from top to bottom parallel to

the imaginary axis, which slightly deviates to the left up to
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the point θdir and to the right after that. Obviously, here θdir
is a saddle point.

Ed = − ipk0
8πε0ε1

∫
Sz

eik0r cos(θ−θdir)F (θ)

(
eρ cos θ − ez sin θ

)
dθ, (19)

where

cos θdir = (z − z0)
/
r, sin θdir = ρ

/
r, (20)

F (θ) =

√
2

iπk0ρ
sin

3
2 θ. (21)

0-��

i∞

�i∞

Sz

�

S

i∞

-����

���

Fig. 1. The contours of integration.

To calculate the integral (19), we first move the integration

contour parallel along the real axis to the origin of the

coordinate system by replacing θ → θ+θdir, after the function

F (θ + θdir) cos(θ + θdir)e
iκ(cos θ+θ2/2) =

∞∑
m=0

aρm
m!

θm,

F (θ + θdir) sin(θ + θdir)e
iκ(cos θ+θ2/2) =

∞∑
m=0

azm
m!

θm,

we make expansion into Maclaurin series, where

aρm =
dm

dθm

(
F (θ + θdir) cos(θ + θdir)e

iκ(cos θ+ 1
2 θ

2)
)
0
, (22)

azm =
dm

dθm

(
F (θ + θdir) sin(θ + θdir)e

iκ(cos θ+ 1
2 θ

2)
)
0
. (23)

Thus, the Sommerfeld integral (19) is reduced to the calcula-

tion of the integral

Ed = − ipk30
8πε0ε

∞∑
m=0

1

(2m)!

(
eρa

ρ
2m − ezaz2m

)
∫
S

θ2me−iκθ2/2dθ, (24)

which vanishes for odd values of m (see. (36) Appendix B).

Finally, we represent the dipole field as an infinite series

Ed(r, θdir) = −i
√
2

pk30
8πε0ε

∞∑
m=0

Γ
(
m+ 1

2

)
m! (iκ)m+ 1

2(
eρa

ρ
2m − ezaz2m

)
, (25)

where Γ is a gamma function.
In (25) we select the leading term of the asymptotic series

Ed0(r, θdir)=− pk20
4πε0ε

eiκ

r
sin θdir(

eρ cos θdir − ez sin θdir
)
. (26)

Note that the leading term of the series coincides with the

expression for the electric dipole in the wave zone

Ed0(r, θdir) ∼ −eθ
pk20
4πε0ε

eiκ

r
sin θdir, (27)

where eθ = eρ cos θdir − ez sin θdir is the unit vector in the

spherical coordinate system.
Let us calculate the coefficients of the series, for example,

of the initial four terms

{aρ2m}=
√

2

iπκ
eiκ sin 2θdir{ 1

2 ;−2; 8 + 1
2 iκ},

{az2m}=
√

2

iπκ
eiκ{sin2 θdir; 2 cos 2θdir;−8 + sin2 θdir

(16 + iκ)} (m = 0, 1, 2, 3). (28)

As a result, we obtain an approximation of the sum of the first

four terms of the series in the cylindrical coordinate system

(κ � 1)

Ed(r, θdir) 	 − pk20
4πε0ε

eiκ

r

{
eρ
(
1 + i

13

8κ
+

209

16κ2

)
sin θdir cos θdir − ez

(
1 + i

13

8κ
+

209

16κ2

)
sin2 θdir + ez

1

κ

(
i+

51

8κ
− i

10

κ2

)}
. (29)

In the spherical coordinate system, the above expression is

written as

Ed(r, θdir) 	 − pk20
4πε0ε

eiκ

r

{
eθ sin θdir

(
1 + i

5

8κ

+
107

16κ2

)
+ er cos θdir

( i

κ
+

51

8κ2

)
, (30)

due to the representation of the basis vectors as{
eρ = er sin θdir + eθ cos θdir
ez = er cos θdir − eθ sin θdir.

(31)

In Figs. (2) and (3) the coefficients of the series aρm (22)

and azm (23) are calculated using approximate formulas (28)

and (28).
Figure 2 shows a comparative estimate of the asymptotic

expression in the form of a power series for the electric field

of a vertical dipole (30) with the exact formula (17). Figure

3 shows the dependence, in percentage, of the modulus of the

relative error of the source field Ed(r, θdir) in the power series

approximation (m = 3) in (30) on the dimensionless distance

(κ = k0r).
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Fig. 2. Directional patterns of a vertical dipole |Ed(r, θdir)|. The solid line
with a marker is the true diagram (17), the solid line corresponds to the
approximate formula (30), κ = 5, ε = 1.
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Fig. 3. Dependence of the relative error of the vertical dipole radiation pattern
(30), on the dimensionless distance κ.

V. CONCLUSIONS

Integral representations of the fields of a Hertz point radiator

in the form of the Hankel transformation (8), (9) as well as

integrals with infinite limits (10), (11) are obtained.

In order to assess the accuracy of the method for calculating

the Sommerfeld integrals, the exact analytical expressions for

the integrals in cylindrical (13), (16) and spherical coordinate

systems (17) are given.

In this paper, the use of the auxiliary integral (36) forms

the basis of the method for calculating the asymptotics of the

Sommerfeld integrals.

Qualitative and quantitative comparisons of the final results

with exact expressions for the Hertz radiator (17) obtained di-

rectly from integral representations in cylindrical and spherical

coordinate systems are presented.

Fig. 3 shows the dependence of the relative error of the

radiation pattern on the distance κ, which does not exceed

one percent. As an example of the reliability of the technique,

it is shown that the expansion of the Hankel functions in an

infinite power series leads to the well-known formula (41).

This work can be continued in solving the Sommerfeld

problem.
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APPENDIX A

REPLACING THE BESSEL FUNCTION BY THE HANKEL

FUNCTION IN THE HANKEL TRANSFORMS

Let an arbitrary analytic function f(kρ) satisfy the condition

f(kρ) = eiπνf(e−iπkρ), (32)

then the representation of the inverse Hankel transform of

order ν of the function f(kρ) is

∞∫
0

f(kρ)Jν(kρρ)kρdkρ =
1

2

∞∫
−∞+i0

f(kρ)H
(1)
ν (kρρ)kρdkρ.

(33)

Using the representation of the Bessel function

Jν(kρρ) =
1

2

(
H(1)

ν (kρρ) + H(2)
ν (kρρ)

)
, (34)
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and the analytic continuation of the Hankel function of the

second kind

H(2)
ν (kρρ) = −eiπνH(1)

ν

(
kρρ e

iπ
)
, (35)

the integral along the negative real semi-axis can be expressed

in terms of the Hankel function of the first kind. Then, based

on the equality of the integrands and the condition (33), the

integrals are combined into one integral, which is contained

in the right side of the expression (32).

In this case, it should be borne in mind that the Hankel

function has a cut along the negative real semi-axis. Therefore,

the path of integration must pass parallel to the cut, above it, at

a distance equal to a vanishingly small imaginary value +i0,

which we will omit everywhere below.

In particular, the function f(kρ) must be even with respect

to the function J0(kρρ) or H
(1)
0 (kρρ), according to condition.

APPENDIX B

AN AUXILIARY INTEGRAL FOR CALCULATING

SOMMERFELD INTEGRALS

Asymptotic calculations of the Sommerfeld integrals in the

form of an infinite series can be optimally performed using

the auxiliary integral∫
Sz

θ2me−iκθ2/2dθ =
( 2

iκ

)m+ 1
2

Γ
(
m+ 1

2

)
. (36)

In order to calculate the auxiliary integral, we first deform

the contour Sz to the imaginary axis, which passes from top

to bottom and slightly deviates from it by an infinitesimal

real value to ensure the convergence of the integral. Then the

integral can be sequentially represented as

−i∞+0∫
i∞−0

θ2me−iκθ2/2dθ = −2

i∞−0∫
0

θ2me−iκθ2/2dθ =

2
√
π (2i)m− 1

2
dm

dκm
κ− 1

2 , (37)

where the last integral can be found by m-fold calculation of

the derivative with respect to the parameter κ on both sides

of the equality sign in the expression for the integral

i∞−0∫
0

e−iκθ2/2dθ = −
√

π

2κ
e−iπ/4, (38)

taking into account the representation of the gamma function

Γ(m+ 1
2 ) =

√
π
1 · 3 · · · · · (2m− 1)

2m
.

The last integral (38) can easily be obtained

C(∞) + i S(∞) =

∞∫
0

eiπt
2/2dt

using the Fresnel integrals [12] and the substitution t =
−i

√
κ/π θ.

A. Calculating asymptotics of the Hankel function

Another illustrative example of demonstrating the technique

for calculating the Sommerfeld integral using the auxiliary in-

tegral (36) is the asymptotic expansion of the Hankel function

in a power series for large values of the argument.

Let us use the Sommerfeld integral representation for the

Hankel function

H(1)
ν (z) =

1

π

∫
Sz

eiν(θ−
π
2 )eiz cos θdθ. (39)

In order to calculate the asymptotic formula of the Hankel

function in the form of a power series, as a rule, we expand

the integrand in the Maclaurin series

eiν(θ−π/2)eiz cos θ e−iz(1−θ2/2) =
∞∑

m=0

hm

m!
θm

with coefficients

hm = e−i(z+νπ/2) dm

dθm
(
eiz(cos θ+θ2/2)eiνθ

)
θ=0

and express the Sommerfeld integral (39) in terms of the

auxiliary integral (36)

H(1)
ν (z) =

eiz

π

∞∑
m=0

hm

m!

∫
S

θme−izθ2/2dθ.

Here one should bear in mind that odd integrands (with

odd values of m) are omitted as the corresponding integral

vanishes.

Thus, using formula (36)and calculating the coefficients

{h2m} = e−iνπ/2
(
1;−ν2; ν4 + iz;−(ν6 + i15ν2z + iz);

ν8 + i(70ν4 + 28ν2 + 1)z − 35z2); . . .
)
, (40)

finally we get the asymptotic expansion of Hankel functions

of the first kind for z → ∞ (see [12] )

H(1)
ν (z) =

eiz

π

∞∑
m=0

h2m

(2m)!

( 2

iz

)m+ 1
2

Γ
(
m+ 1

2

)
=

√
2

iπz

ei(z−ν π
2 )
(
1 + i

(4ν2 − 1)

8z
− (4ν2 − 1)(4ν2 − 9)

2! (8z)2
+ . . .

)
.

(41)

The main term of the series is (m = 0)

H(1)
ν (z) 	

√
2

πz
ei(z−ν π

2 −π
4 ). (42)
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