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Abstract
A nonstationary two-body problem is considered such that one of the bodies has a spherically symmetric density distribution and is central, while the other one is a satellite with axisymmetric dynamical structure, shape, and variable oblateness. Newton’s interaction force is characterized by an approximate expression of the force function up to the second harmonic. The body masses vary anisotropically at different rates. Reactive forces and additional torques may occur. A new model problem is proposed, when an axisymmetric body varies mass nonisotropically in the presence of reactive forces and additional torques. Equations of motion of the axisymmetric body in a relative coordinate system with the origin at the center of the central body are obtained. In the general case, the obtained equation is nonautonomous and nonlinear complex, therefore the problem is investigated by the methods of perturbation theory. Using the methods of canonical perturbation theory, a particular case of the problem is investigated in detail, when the reactive forces and additional torques are equal to zero. Equations of the translational-rotational motion of the satellite in osculating analogues of Delaunay-Andoyer elements are described. Equation of motion consists of twelve nonautonomous first-order equations that are canonical. In the case when there is no resonance, the evolutionary equation is obtained by double averaging according to the Gaussian scheme. The evolutionary equation decomposes into a system of four first-order differential equations with one first integral, the solution of which determines the evolution of the system. All necessary symbolic calculations are performed using the Wolfram Mathematica computer algebra system.
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1. Introduction 

In connection with the nonstationarity of real cosmic bodies, it is relevant to create celestial-mechanical models of the dynamics of mutually gravitating celestial bodies with variable masses, sizes and shapes [1], [2].

Present day the celestial-mechanical models of nonstationary gravitating bodies are underdeveloped. In the present work, a nonstationary binary system consisting of central spherical symmetric body and the axisymmetric satellite are investigated. In the general case, when the masses vary nonisotropically in the presence of reactive forces and torques, a model problem in the relative coordinate system is proposed.

In the case when there are no reactive forces and torques, the problem is investigated by the methods of the canonical perturbation theory, and evolutionary equations are obtained.

The obtained evolutionary equations are qualitatively analyzed and interesting conclusions are drawn.

In this work, all the necessary calculations are carried out using the Wolfram Mathematica system [3].
2. The physical statement of the problem
Let us assume the following conditions:

1. The first body is central with variable mass 
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 is ball with variable density, with spherical distribution and with variable radius 
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. Its moments of inertia of the second order are the same, variables and given known functions of time 
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2. The second body is satellite with mass 
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 has a nonstationary axisymmetric dynamic structure, shape and characteristic linear dimensions 
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 and its second-order moments of inertia are variable and given known functions of time. Such a satellite is characterized by variable oblateness, and its principal central moments of inertia 
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3. The masses and sizes of the central body and the satellite vary at different specific rates
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4. The nonstationary axisymmetric body has an equatorial plane of symmetry. Consequently, it has three mutually perpendicular planes of symmetry. The intersection of these three mutually perpendicular planes form three mutually perpendicular lines. These lines are the principal axes of inertia of the axisymmetric body;
5. We direct the axes of the intrinsic coordinate system along the principal axes of inertia of the body. The orientation of these axes with respect to the body remains unchangeable during the evolution;
6. Due to the variability of the masses of the second body, the resulting reactive force is not equal to zero, its module and orientation are variable and arbitrary

[image: image14.wmf]0

react

F

¹

r

;                                                                                                                                  (3)
7. Let the additional torques of the axisymmetric body are not equal to zero due to reactive forces and a variable geometry of the mass. Then you can write [4] 
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The first term is generated because of the resulting reactive forces and represents the principal moment 
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 of the reactive forces relative to the center of inertia of the axisymmetric body 
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. Due to the fact that the axisymmetric body varies the geometry of the masses the second term is in the general case, a body of variable composition. Here 
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 it is the matrix of the inertia tensor of the axisymmetric body with respect to its center of inertia 
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;
8. We restrict ourselves to the approximation of the force function of the Newtonian interaction up to the second harmonic inclusive.

Note that the characteristic linear dimensions and torques of inertia are considered to be known specified functions of time, therefore, in the considered formulation, an additional internal degree of freedom does not arise.

3. Equations of motion in the relative coordinate system

The equation of motion in the relative coordinate system 
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where 
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 is the reduced mass, 
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 are the projections of the angular velocity of the satellite onto the axes of its intrinsic coordinate system and 
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 are the Euler angles.
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The moment of inertia 
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 of the axisymmetric body with respect to the vector 
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 connecting the centers of mass of two bodies is determined by the expression
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where 
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  are the direction cosines of 
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 with the axes of the intrinsic coordinate system of the satellite coinciding with its principal central axes of inertia.

In the considered formulation, the obtained equations (5)-(11) fully characterize the translational-rotational motion of the nonstationary axisymmetric body in the attraction field of the nonstationary spherical body in the relative coordinate system with the origin at the center of the spherical body.

Note that the reactive forces and additional torques are written for the general case. In the general case, the problem is very complicated, but the proposed mathematical model adequately describes a wide range of real physical problems in the dynamics of nonstationary gravitating systems.

4. Special case when the axisymmetric body varies mass radially and there are no reactive forces and torques
Let us assume that varies in the masses, sizes and shape of the axisymmetric body occur radially (radiant expansion or oblateness) [2]. Let us also assume that the total reactive force due to the variability of the masses of dimensions is equal to zero and additional torques do not arise.  
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Then the equation of motion (5)-(8) is simplified and the canonical perturbation theory developed for such systems can be used [2], [6].

The equation of the translational-rotational motion (5)-(6) in case (12) in the canonical osculating elements of the Delaunay-Andoyer
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have the form [2], [5]
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where 
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In formulas (17)-(18), the well-known relation 
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where

[image: image49.wmf](

)

(

)

222222

111213

222

222222

212223

222

2222

3133

22

LGHGLHGL

sinh,cosh,sinh,

GGG

LGHGLHGL

cosh,sinh,cosh,

GGG

GHGL

LH

,,

GG

eee

eee

ee

¢¢¢¢¢¢¢¢

---

¢¢¢

===

¢¢¢

¢¢¢¢¢¢¢¢

---

¢¢¢

==-=

¢¢¢

¢¢¢¢

--

¢¢

==-

¢¢

                 (21)

[image: image50.wmf]1112

2122

22

3132

22

11

HH

coshsingsinhcosg,coshcosgsinhsing,

GG

HH

sinhsingcoshcosg,sinhcosgcoshsing,

GG

HH

cosg,sing.

GG

tt

tt

tt

=--=-

=-+=+

=-=-

                                          (22)
4. Unperturbed translational and rotational motions in analogues of the Delaunay-Andoyer variables

If the perturbing function in equations (15) and (16) is zero, then we arrive at the equations of the unperturbed translational-rotational motion of the nonstationary axisymmetric body in terms of Delaunay-Andoyer elements.

The unperturbed translational motion is described by the unperturbed equations of aperiodic motion along the quasiconical section in the Delaunay elements
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The unperturbed rotational motion is an analog of the Euler-Poinsot motion, which is the rotational motion of a free nonstationary axisymmetric body around its own center of inertia. The equations of unperturbed rotational motion in the Andoyer elements have the form (see Fig. 1)
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It can be seen from formulas (24) that when the dynamic form of an elongated (oblated) axisymmetric body 
[image: image53.wmf]()()

AtCt

<

 is oblated (elongated) and its ellipsoid of inertia becomes spherical (
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 becomes equal to zero. At subsequent moments, the dynamic form of a oblated (elongated) axisymmetric body varies 
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 varies sign and the body begins to rotate in the opposite direction. It is of interest to study this phenomenon in a perturbed movement.
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Fig. 1. Andoyer variables.
The geometric meaning of the Andoyer elements are given in the works [2], [6]-[9]. Note that the equality
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The mutual orientation of a nonrotating coordinate system 
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 and the rotating coordinate system 
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, which is related to the axisymmetric body, is determined by the direction cosines [2], [6]-[9].

5. Evolutionary equations of the translational-rotational motion of the axisymmetric body

We consider the nonresonance case. By averaging the right-hand sides of Eqs. (15) and (16) over the variables 
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 , we obtain equations for secular perturbations of the translational-rotational motion of the nonstationary axisymmetric body in the problem in question. We denote the secular parts of the perturbing functions 
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Thus, computing secular perturbations reduces to the fourth-order system [5].
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Upon solving system (27), we integrate the remaining equations 
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where 
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System (27) can be written in the form
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System of differential equations (33) admits the first integral [5]
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6. Short analysis of evolutionary equations and discussions 
It is convenient to analyze the obtained equations of motion and integrals in the elements of aperiodic motion along the quasiconical section and in the Andoyer elements. We use the following well-known relation
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From formulas (28) it follows
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Taking into account formula (36), we rewrite equation (33) and the first integral (35) in the form
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From relations (38), (39) we can draw important qualitative discussions.
1.  The semimajor axis and the eccentricity of the orbit of the center of inertia of the axisymmetric body remains constant
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2. The longitude of ascending node and the inclination of the orbital planes of the center of inertia of the axisymmetric body are variable, determined by the equations
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3. Module of vector of kinetic moment of rotational motion of the axisymmetric body remains constant
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Angle 
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4. Angle 
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The longitude of ascending node 
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Under condition (12), the obtained properties of evolution equations for any initial conditions and for any arbitrary time functions 
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7. Conclusions

The translational-rotational motion of a nonstationary axisymmetric body in the gravitational field of a nonstationary ball is investigated by the methods of perturbation theory. Evolutionary equations are deduced, which decompose into the system of four equations with one first integral and the rest. The integrals and the system of four equations are qualitatively investigated and the corresponding conclusions are obtained. The obtained evolutionary equations can be investigated by numerical methods.
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