The Pattern of 5-Hydroxytryptamine Receptor Subtypes Mediated Epidermal Growth Factor Receptor Transactivation In Rat Aorta

Sahika Guner¹, Tamila Akhayeva², Hakan Gurdal^{3. 1}Ufuk University, School of Medicine, Department of Medical Pharmacology, Ankara, Turkey, ²Astana Medical University Department of Pharmacology, Astana, Kazakhstan, ³Ankara University, School of Medicine, Department of Medical Pharmacology, Ankara, Turkey

 G_{a} protein-coupled 5-HT_{2A} and G_{i} protein-coupled 5HT_{1B} receptor subtypes are mainly found in vascular tissue and they mediate contractile responses in vascular smooth muscle. Epidermal growth factor receptors (EGFR) are transactivated by many G protein-coupled receptors. We have previously shown transactivation of EGFR by α_1 adrenergic receptor and 5-HT receptors in vascular smooth muscle(1,2). In this study, we aimed to investigate $5HT_{2A}$ and $5HT_{1B}$ receptor mediated EGFR transactivation profile in rat aorta. For this purpose, we examined the effect of the selective $5HT_{2A}$ agonist α -Methyl-5HT (10 μ M) and the selective 5HT_{1B} agonist Sumatriptan (Suma, 10µM) on EGFR phosphorylation with and without the EGFR inhibitor AG1478 $(10\mu M)$ in endothelium-denuded rat aorta. 14-16 week Male-Wistar rats were anesthetized with ketamine/xylasine (100mg/kg,10mg/kg IP), and thoracic aorta were obtained. All animal experiment were performed following approval by Ethics Commitee of Ankara University. Statistical comparison was performed in at least 3 independent experiments using unpaired Student's t test.Furthermore, we evaluated α -Methyl-5HT and Suma stimulated auto-phosphorylation (pEGFR₁₁₇₃) and Src kinase-specific phosphorylation (pEGFR₈₄₅) of EGFR in the presence of Srckinase or PI-3 kinase inhibitors (PP2, 10µM, LY 294002, 10µM, respectively). Both α-Methyl-5HT and Suma increased pEGFR₁₁₇₃ (Control (C), 100±4,8% vs α-Methyl-5HT; 233 \pm 13%; C, 100 \pm 32% vs Suma 326 \pm 28%) and pEGFR₈₄₅ (α -Methyl 5HT $166\pm10\%$; Suma, $385\pm15\%$) compared to unstimulated tissue (n=3). Moreover AG1478 incubation inhibited α -Methyl 5HT and Suma mediated phosphorylation of EGFR (pEGFR₁₁₇₃: α -Methyl-5HT+AG, 90±15%, Suma+AG, 124±15.5% and pEGFR₈₄₅ α -Methyl-5HT+AG; 70 \pm 11% Suma+AG, 153 \pm 2.9%). PP2 and LY294002 partially and completely inhibited α -Methyl 5HT-induced phosphorylation of EGFR₁₁₇₃ and EGFR₈₄₅, respectively.On the other hand, while Suma-induced phosphorylation of EGFR₈₄₅andEGFR₁₁₇₃ was inhibited by the PI-3 kinase inhibitor, LY 294002, PP2 partly inhibited and did not inhibit phosphorylation of EGFR₈₄₅ and EGFR₁₁₇₃, respectively. Our results show that Src kinase and PI-3 kinase have similar roles in 5HT_{2A} mediated EGFR transactivation whereas PI-3 kinase has more prominent effect in 5HT_{1B} dependent EGFR transactivation.

Figure 1. Alpha-Methyl-5HT (10µM, 5 minutes) stimulated A. EGFR₁₁₇₃ and B. EGFR₈₄₅phosphorylation and Sumatriptan (10µM, 5 minute) stimulated C. EGFR₁₁₇₃ and D. EGFR₈₄₅ phoshorylation in endoteliumdenuded rat throcic aorta.Net intensities of pEGFR and tEGFR blots were calculated three separated experiments. Bar graphs were represented ratio of pEGFR-to tEGFR compared to control (unstimulated tissue). Data were shown as a (Mean ± S.E.M). Statistical differences **P< 0,01 ****P< 0,0001 vsC group.

1. Ulu N et al (2013). The Journal of Pharmacology and Experimental Therapeutics 347(1)47-56

2. Guner S et al (2014). The FASEB Journal (28 no. 1 Supplement 1065.7)