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Abstract— It is well known that, emulation in the form of 

software is the predominant method for engineers to evaluate the 

capabilities of the studied microprocessors and embedded systems. 

There are three main criteria for evaluating a model using 

software tools: modeling speed, model accuracy, and model 

completeness. The increasing complexity of the processor and the 

tendency to have an increasing number of processors on the chip 

put a strain on simulators to achieve all of the above criteria, 

including accurate fixation of processes in the OS. Thus, the main 

task in our work is experiments-prototyping using an emulation 

system and analysis of the results of the described experiments, 

which satisfies all three criteria. The system is a Board with FPGA, 

RAM, ROM, real-time clock, DAC chips, and connectors for 

connecting a monitor, keyboard, and mouse manipulator soldered 

on it. The system is based on the FPGA Cyclone IV from 

ALTERA. Which, thanks to a sufficient number of logical cells, 

allows you to simulate not only a single processor, but also other 

components of the computer as a whole. Therefore, you can apply 

architectural changes to the processor and evaluate their impact 

on the entire system. We use this FPGA-based emulation system 

to validate the computer's FPGA emulation capabilities. The 

paper justified the possibility of emulating a computer on an 

FPGA and its ability to run real operating systems that are not 

stripped down. The novelty of this project is that unlike other 

similar projects, the system developed by us allows you to emulate 

a full-fledged personal computer with an x86 processor 

architecture, on the basis of which you can emulate more modern 

computers with processors. For example: Intel Atom or Intel 

Celeron. However, to achieve these goals, you will need to use a 

more developed FPGA, based on the methodology proposed in this 

paper.  
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I. INTRODUCTION 

Computer architecture research has traditionally used 
software to emulate a single-core processor such as 
SimpleScalar [1]. Both previously and today, improving the 
architecture of processors and memory hierarchies is an urgent 
task. In addition, there are currently additional optimization 
requirements across the entire system stack (processor 
architecture, command set, device drivers, operating system, and 
applications) with multiple processors. However, the above-
mentioned research at the system level is constrained by a 
certain contradiction between the speed and detail of modeling 
software and hardware components, and this contradiction is 
inherent in software simulators, traditionally used for 
innovations in microprocessor systems. Field Programmable 

Gate Arrays (FPGA) are considered as a solution to this 
contradiction and are aimed at developing a new research 
infrastructure of the system stack that simulates a complete 
system (processor, video card, sound card, North and South 
bridges, network modem, etc.) [2]. Flexibility, speed (both 
development time and simulation time) , and sufficient FPGA 
capacity allow developers to emulate microprocessor systems 
and computers in General. It should be noted that with the onset 
of the 4th industrial revolution [3], in the development and 
implementation of smart technologies in the urban environment, 
such as the MQTT Service Broker [4] and With the transition of 
states to electronic provision of services, many security 
problems have arisen both for personal data [5] or the Event 
Handler system as a MQTT [6] and for the protection of systems 
in general. In connection with the software implementation of 
various architectures, FPGA-based projects allow not only to 
parallelize information processing at the hardware level, but also 
to maximize information protection from hardware backdoors or 
so-called backdoors on the part of chip manufacturers, for 
example: Intel Management Engine [7]. However, one of the 
most difficult issues facing the development of an emulation 
system on an FPGA is compatibility with existing operating 
systems (OS). Manufacturers have developed processor cores 
for FPGA that are very small and simple, but have limited 
support even for embedded operating systems like Barebone. In 
addition, in order to run existing OS binaries, including closed 
source ones such as Windows, it forces developers to consider 
binary translation of OS files as a solution to the binary 
translation problem [8]. In this research and convenience in this 
work, we emulate a version of a commercial desktop computer 
with an x86 processor on an FPGA to run real operating systems. 
To be more precise, we replaced the computer with a debugging 
Board with the necessary components soldered on it. Debugging 
Board components: FPGA, RAM, ROM, real-time clock, and 
some other chips are required to connect the FPGA to PC 
peripherals. The following devices are emulated on an FPGA: 

• Pentium compatible processor running at 50 MHz with a 
32 KB cache. 

• IDE controller.  

• SD-IDE interface Converter. 

• Intel 8259 compatible programmable interrupt 
controllers 

• Intel 8237 compatible direct memory access controller 
(DMA) 



• Sound Blaster – sound card 

• Intel 8254 compatible programmable three-channel 
timer and counter 

• Intel 8042 compatible keyboard and mouse controller 

• Standard VGA video card 

• 8250 UART-COM port 

It is important to emphasize that the FPGA-based computer 
emulation system allows us to run real operating systems on the 
FPGA, such as DOS, FreeDOS, Linux, and Windows, and 
interacts with real peripherals. The ability to emulate a PC based 
on FPGA provides a powerful tool for research and modification 
of more advanced microprocessors. Although our proposed 
emulator system does not contain a modern microprocessor, its 
applicability to modern architectural research increases due to 
the advanced modeling capabilities. 

II. FEATURES OF EMULATION SYSTEMS 

The concept of using FPGA for faster and more accurate 
research of the microprocessor development space has recently 
become widespread, which has led to an increase in the number 
of publications on this topic [9]. Some of these works focus on 
speeding up simulation time by offloading highly detailed 
resource modeling in FPGA, while the software simulator 
remains the core of the emulation environment [10]. Other 
studies often focus on a single architectural innovation (for 
example, transactional parallel systems [11], caching [12], 
vector-thread processors [13]) and building models of the 
corresponding hardware based on FPGA. In addition to these 
approaches, we have implemented a full-fledged 
microprocessor on FPGA, which allows you to use CPUs with 
different architectures, for example: x86, x64, ARM, and others. 
Most of the RTL models of microprocessors have already 
become available for the SPARC V8 , Niagara, and PowerPC . 
These cores can be synthesized in FPGAs and are designed to 
facilitate design, as seen in Jones et al. [14]. Our emulation 
platform also provides several orders of magnitude faster 
simulation compared to software emulators such as Bochs and 
Qemu. Some existing developments in embedded systems that 
apply add-ons to an FPGA-based core have already been listed 
above. The utility of the application microarchitecture variation 
was seen in [17], and its automatic navigation in [18]. In 
addition, the effect of including user instructions in such kernels 
has been studied [19]. Unlike Amber (Conor Santifort), Cortex-
M1 (ARM), Navre (Sébastien Bourdeauducq), LEON (ESA, 
Aeroflex Gaisler), OpenSPARCT (Sun) [23], ZPU (Zylin AS) , 
HIPP [20]  and others, we focus on desktop systems, interaction 
of peripherals and an operating system that supports x86 
architecture. 

III. FPGA-BASED EMULATION SYSTEM 

In our work the emulation environment consists of four main 
components:   

FPGA on which the Pentium processor and PC motherboard 
are emulated;  

• hardware, including the debug Board and peripherals;  

• software / operating system; 

• necessary software for the implementation of the FPGA 
project (Quartus II).  

• Let's describe each of these four points in more detail. 

A. The Emulated hardware 

• The processor used in developed emulation system is a 
recreated copy of the Pentium [25] released after i486 
and before Pentium Pro in 1993 using 0.6 micron 
technology, consisting of 3.2 million transistors and 
initially operating at a frequency of 75 MHz. It is a 32 bit 
processor with 5 step pipelining that supports the IA32 
instruction set, which includes floating-point instructions 
using the built-in floating-point module in the pipeline. It 
is equipped with a level 1 cache of 8 KB for data and 
instructions. 

• IDE hard disk and floppy disk controller, Intel 8259 
compatible programmable interrupt controllers, Intel 
8237 compatible direct memory access controller 
(DMA), Sound Blaster, Intel 8254 compatible 
programmable three-channel timer and counter, Intel 
8042 compatible keyboard and mouse controller, 
standard VGA video card, 8250 UART-COM port were 
recreated from the technical documentation of the 
address space distributed by BOCHS[24]. 

The debug Board contains the FPGA (Fig. 1) and the 
necessary chips and connectors for connecting peripherals. 
These include SDRAM, flash for bios and vgabios, a TTL logic 
level Converter for com port, and a DAC for VGA. The FPGA 
used for emulation is a 90 nanometer Altera Cyclone IV device. 
A more detailed analysis of the Cyclone IV resources used by 
the system will be given in section 5.  

 

Fig. 1. Image of a PC emulator system based on an FPGA debug Board 
equipped with different hardware peripherals running Windows ME 

B. Emulator debugging Board 

The DE2-115 Board from Terasic was chosen as the basis 
for the main Board on the ALTERA Cyclone IV e 
ep4ce115f29c7 FPGA. This Board has all the necessary 
connectors for connecting peripherals. Such as a keyboard, 
mouse manipulator, VGA display, logical level Converter for 
COM port, etc. as well as 128 MB SDRAM and 8 MB flash for 
storing BIOS and VGABIOS, as well as a connector for 



connecting SD cards. In addition, a second SD card and an 
external real-time clock are connected to the debug Board. SD 
cards play the role of IDE hard drives and floppy disks. The 
other necessary devices are emulated on the FPGA.  

1) Motherboard 
As previously mentioned in the emulation system, the FPGA 

is taken as a basis on which all the necessary PC components are 
recreated. The emulator motherboard (Fig. 2) can be divided into 
2 main parts: FPGA and peripherals. 

  

Fig. 2. Block diagram of the emulator 

Peripheral devices include: 

• Flash memory is non-volatile memory that is used to 
store BIOS and VGABIOS with factory settings. 

• SDRAM is a volatile memory that is used as PC RAM. 

• RTC (Real Time Clock) is a CMOS RTC electronic 
circuit MC146818 designed to take into account 
chronometric data (current time, date, day of the week, 
etc.), is a system from an autonomous power source, 
taking into account devices and a tiny static memory with 
a very low power consumption in which the basic BIOS 
settings are stored. 

• SD cards - in this case, they were used as hard drives on 
which the OS was installed. One of the SD cards can 
serve 2 roles: hard drive and floppy. Switching between 
roles is carried out depending on the image recorded on 
the SD card. 

• DAC (digital to analog converter) - this device converts 
a digital signal that outputs the GPU to the FPGA into an 
analog signal for connecting to a monitor using the VGA 
video interface standard. 

• DAC, ADC (digital to analog converter, analog to digital 
converter) - this device converts the digital signal that the 
audio card outputs to the FPGA into analog for 
connection to speakers or headphones. It also converts an 
analog signal to digital for connecting a microphone to a 
sound card. 

• UART / TTL is a logic level converter chip from 3.3 V 
to + -15 V for connecting to the port. 

C. Testing operating systems 

The challenge of our FPGA-based system is the ability to 
load real operating systems. We successfully installed 
unmodified versions of FreeDOS, DOS 6.2, Windows 96, 
Windows 98, Windows ME, Windows 2000, Windows XP, 
Tiny core linux, Fedora Core 4, Red Hat 9; the installation 
procedure did not differ from the usual desktop system except 
that instead of the installation disk, we used its image 
downloaded to the SD card.  

To measure the OS boot time for each of them, a program 
was written and added to autoload with the sole purpose of 
displaying a message via the COM port. The measurements 
were carried out using the standard utility SignalTap II Logic 
Analyzer built into Quartus II, the results of which can be seen 
in Figure 3, the input parameters of which are: 

Clock frequency: internal generator at 10 Hz. 

Triggers: Start FPGA and start data transfer via COM port. 

  

Fig. 3. PC boot schedule with OS 

As you can see from the graph (Fig. 3), loading an emulated 
PC with an OS without a graphical interface takes from 8 to 16 
seconds, and with a graphical interface from 100 to 120 seconds. 
The average startup time of some standard applications can be 
seen in Figure 4. 

  

Fig. 4. Application launch schedule 

Typing is definitely done at full speed. To measure the 
maximum search time for text files, the following experiment 
was carried out: 
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Files of different sizes with an arbitrary set of characters and 
the search word at the end are given. The standard application 
“notepad” was chosen as the search application. The search time 
was measured by filming the search process with a video camera 
from the moment the “Search” button was pressed and until the 
end of the search, the results of which are shown in Figure 5. 

  

Fig. 5. Graph of delay during search in a text file 

Thus, the system is ideally suited as a desktop computer for 
very simple non-graphical applications. And for more complex 
ones, you need to replace the video card, the requirements for 
which depend on the application.  

D. Development of an emulator on FPGA 

For PC synthesis and placement, we use Quartus II 16.0 64 
bit, and for routing emulated peripherals, we use The qsys 
subprogram built into Quartus II. The entire compilation process 
takes about 1 hour to synthesize, map, place, route, and generate 
the bit stream, followed by an additional 2 minutes to load the 
bit stream to the device. This is orders of magnitude faster than 
the manufacturing time of the silicon implementation of the 
processor, which can be inserted directly into the motherboard. 
From a debugging perspective, Modelsim is used to simulate 
VHDL in a step with a software simulator that simulates the 
original behavior of the processor and emulated devices. A set 
of regression tests is used to make sure that the processor is still 
running on x86. Regression tests are a subset of those used to 
test the original Pentium. 

IV. DESCRIPTION AND SOME FEATURES OF SOFT PROCESSORS 

This section will describe the improvements of the integrated 
Pentium processor when increasing the amount of memory 
caches, as well as the ability to connect already emulated 
processors to our system. 

A. Third-party SOFT processors 

Today, there is a fairly large selection OF soft processors for 
FPGA, both old and relatively new, but in most of them the main 
distinguishing feature is the RISC architecture that allows you 
to run Linux on them at best. 

For this system, the following SOFT processors were tested 
for the role of the CPU: Amber-a processor compatible with 
ARM A23; VexRiscv-a processor with the RV32I instruction 
set; as well as a number of other processors such as: LEON; 
OpenSPARC; CPU86; ZetCPU (x8086); OpenRISC, NIOSII. 
The space occupied by these SOFT processors is shown in figure 
6. 

  

Fig. 6. Space occupied by various SOFT processors  

B. Emulator debugging Board 

The cache level 1 of the selected Pentium processor is 8 KB, 
which is of course small by today's standards, but enough to 
demonstrate the possibility of changing the processor 
configuration. Recall that there are two similar caches, one for 
data memory, the other for instruction memory, each of which 
has a size of 8 KB and is a two-way associative set of 32 bytes 
per cache line [21]. In our experiments, the cache sizes were 
increased 4 times, and became 32 KB 8 band associative caches. 
The LRU algorithm, which determines which row is pushed out 
in the full set, has also been extended to handle sets of 8 cache 
rows. Instruction and data caches can be individually configured 
for 8 KB or 32 KB versions. for larger volumes, you need to 
replace the FPGA, but in this work, we always keep them the 
same size 32 KB.  

V. EXPERIMENT WITH THE EMULATOR SYSTEM 

In this section, we analyze and test a PC system with an 
emulated Pentium processor based on FPGA to obtain the 
following results: Allocation of system resources of the 
emulated PC according to the CAD stream; Comparison 
between the original cache of level 1 8 KB and our extended 
cache of level 1 32 KB. We will look at each stage in more detail. 
Note that the number of elements used in this paper is considered 
in terms of FPGA resources. However, the FPGA resource 
analysis can be used for preliminary estimation of the number of 
transistors when implemented on a silicon wafer [22]. 

A. Distribution of the emulator system volumes 

In this work, we emulated a computer based on a Pentium 
compatible processor in VHDL for Cyclone IV E 
EP4CE115F29C7 and noticed that more than half of the device's 
resources were used; the corresponding data is shown in table 1, 
taken after completing high-level synthesis and mapping the 
model in Quartus.  

TABLE I.  USE OF SYSTEM RESOURCES IN CYCLONE IV 

Resource Used space Percentage 
utilization 

Total logic 
elements 

104731 91 % 

Total 
combinational 

functions 

95179 83 % 

Dedicated logic 
registers 

71273 62 % 
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In our experiment, 91 % of the logic elements were used to 
store all the system logic. In addition, 62 % of the register blocks 
were used. Although more than half of the FPGA resources were 
used for emulation, there are still enough unused elements on 
the FPGA to extend the PC's capabilities. Figure 7 shows a 
breakdown of each Cyclone IV resource used by different blocks 
in the system. 

  

Fig. 7. Space occupied by PC components 

As you can see from the graph (Fig. 7), Most of the logic 
elements and registers were used by the processor, sound card, 
and hard disk controller. Cyclone IV logic elements were used 
mainly by FPU, ALU, address generation and cache, conversion 
of SD-IDE interfaces and audio codecs. The entire memory 
hierarchy in the experiment (including caches and the bus 
interface) required approximately 30 % of the logic elements, 
assuming that even when considering logic alone, almost half of 
the chip is allocated for communication, leaving the other half 
for management and actual calculations. Special attention 
should be paid to the organization of access to RAM and the 
relationship between a large number of modules via DMA, 
which is the main factor affecting both the speed and the amount 
of space occupied. 

B. Changing the size of the level 1 cache for the emulated 

processor 

Figure 8 shows the additional FPGA resources consumed 
when increasing the L1 cache from 8 KB (in 2 directions) to 32 
KB (in 8 directions). The expansion required about 24 % more 
logic, as well as more than 50 % more registers, which made this 
growth in the L1 cache very expensive in terms of volume. 
However, the performance gain is quite significant. On average, 
the performance improvement reaches 16 %, sometimes 

reaching 40 %. Despite the presence of a significant number of 
publications devoted to the study of Cache functioning and its 
interaction with the CPU, OP, OS, and other computer 
components, this work is of interest from the point of view of 
controlling the actions of the operating system, such as clearing 
the cache and replacing it, while maintaining high simulation 
speeds. However, such studies have not received sufficient 
coverage in the literature. 

  

Fig. 8. Increasing the space occupied by the level 1 cache  

C. A comparison of the performance of emulators 

As you know, today there are several PC emulators such as: 
Limbo, Qemu, Bochs, DOSBox, VirtualBox, VMware 
Workstation, Wine, Simics [15], SimOS [16], etc. each of these 
emulators has its advantages and disadvantages. Some 
emulators were not affected in this work. For example: 
VirtualBox and VMware Workstation-do not emulate the 
processor but use the host processor; Wine and Limbo-are 
focused on Android devices. To confirm the effectiveness of our 
emulator, the following experiment was performed: 

The conditions of the experiment: 

1) 3 PC emulators: Qemu; Bochs; FPGA emulator 
developed by US  

2) processor Frequency 50 MHz 

3) 128 MB RAM 

4) Same Windows XP image 

To conduct experiments, we developed a specialized 
program that emits the activity of an office computer. Namely:  

1) waiting for work to start;  

2) open the directory and select documents;  

3) typing;  

4) move the text editor window.  

During the experiments, the load on the emulated processor 
was recorded. The results of which can be seen in figure 9. 
Where from 0 to 1 second-waiting for work to start; from 1 to 4 
seconds - opening directories and selecting documents; from 4 
to 6 seconds-typing; from 6 to 8 seconds-moving the text editor 
window. 
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Fig. 9. CPU usage 

As you can see from the graph, the FPGA emulator we 
developed shows good results compared to other emulators in 
our experiment. Especially good results are seen when working 
with files and text, while the CPU load does not exceed 5 %, 
which is 3 times less compared to Bochs and 6 times less 
compared to Qemu. In this case, the text set that is fed to the 
emulation system is comparable to the text set in Bochs and in 
our experiment loads the processor by 4-7 %, in contrast to 
Qemu which loads the processor by 11-25 % (Fig. 9). Which 
allows you to make the following conclusion. The FPGA 
emulation we created is as good as commercial PC emulators, 
and in some cases even better. It performed best when 
interacting with external devices such as the mouse and 
keyboard manipulator (Fig. 9). It should also be noted that 
during the experiments it turned out that the Bochs emulator 
does not work well with the mouse manipulator.  

VI. CONCLUSION 

The FPGA-based PC emulator is a powerful tool for 
researching architectural improvements to processors and other 
desktop components. Its ability to quickly prototype 
architectural changes and measure their impact at the application 
level in the presence of a real operating system provides a more 
realistic research tool without the expensive costs and long 
design times associated with silicon-based creation.  

The system we emulated showed that it can be used to 
develop and achieve greater efficiency of the source computer 
by optimizing the entire system stack: architecture, device 
drivers with installed instructions, operating systems and 
applications without limiting the time of simulation of the 
software simulator. For illustration, we used FPGAs with fairly 
limited functions, but using more advanced FPGAs will allow 
us to emulate modern multiprocessor and multicomputer 
systems based on our methodology.  
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