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HIGHLY LOADED EVENT DETECTION SYSTEM ARCHITECTURE

A.B. Mussinal, S.S. Aubakirov’, P. Trigo?

!Al-Farabi Kazakh National University, Almaty, Kazakhstan,
GulAA; ISEL - Instituto Superior de Engenharia de Lisboa; BiolSI - Biosystems &
Integrative Sciences Institute / Agent and Systems Modeling, University of Lisbon, Portugal

Social networks already play a significant role in human’s daily life. Therefore social net-
works have become an arena of enormous opportunities to perform data analysis. Social
media analytics applies to digital marketing, social opinion analysis, political situation
monitoring, natural disaster notification. It is possible to detect events on which people are
reacting in every moment. Event detection is a powerful data analysing process useful for
different areas. We want to construct social models and event patterns prediction model
based on online social media event detection in real-time. In this part of the research work
we will present highly loaded, fault-tolerant, scalable system for social media data collec-
tion and real-time analysis.

Key words: event detection, highly loaded, fault-tolerant, scalable architecture, Telegram.

1. Introduction

Social media is mostly free, powerful and highly-spreaded platform for brand communication
with their audience. Company may get quick feedback and make influence analysis of its posts [1].
Different Online Social Networks (OSN) construct own relationships between consumers and produc-
ers [2]. In our main research we want to analyse social behaviour in the context of messaging and
posts reaction within Telegram messenger. As of April 2020 the Kazakhstan’s audience of Telegram
reached 400 000 users, while at the beginning of 2019 it was approximately 200 000 users [3]. Tele-
gram is relatively young OSN and has not yet been a subject of research. In April 2020 its monthly ac-
tive users all over the world reached 400 million users. The authors of Telegram OSN provide many
public tools for developers to build their own client application [4].

Event detection process has been applied for various OSNs and purposes. An ’event” has differ-
ent definitions according to context and application. First we consider the definition as ”An occurrence
causing change in the volume of text data that discusses the associated topic at a specific time. This
occurrence is characterized by topic and time, and often associated with entities such as people and lo-
cation” [5]. Event detection in OSN is important for social analysis, because it allows to estimate pub-
lic interest in an occurred event. Moreover, events analysis lead to the detection of substantial sub-
events [6]. For example, at the beginning of the 2020 year the whole world faced new virus COVID-
19. Such high-level event subsumes many significant low-level sub-events such as illegal reselling es-
sential items, bullying activity, misinformation spreading, growth of free online services and infection
of celebrities.

Our goal is focused on the intellectual social modelling and event patterns prediction based on
online social media in real-time. At the moment in our research we have analysed related work and
implemented highly loaded, fault-tolerant, scalable system for social media data collection.

2. Related works

Event detection is fairly popular theme for researches. A comprehensive survey on event detec-
tion [5] describes four challenges in the event detection area:
1.  New event detection (NED)
This challenge occurred when we don’t know what to expect. NED real-time system should cor-
rectly identify new event that has not been discussed before.
2. Event Tracking
Refers to the study of how events spread and evolve.
3. Event summarization
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Creating summary about events based on bursty features.

4. Event Associations
Events could impact on each other. Event associations based on analysis of the events relation-
ships. It is also denoted as event graphs” [7].

Another survey [8] includes research on event detection about disasters, news, out-breaks and
traffic. The authors’ work was focused on analysing only the Twitter OSN. Authors mentioned actual
work on pandemic outbreak detection made in [9] work. In Twitter people share information about
their life, something personal. In case of pandemic users could post information about their health,
symptoms or share any medical information. This data could be very helpful for medical authorities to
estimate epidemic scale.

The natural disasters is a common interest of various researchers. People post essential infor-
mation during and after event according to their feelings and real-time situation. Research [10] con-
centrated on the evolution of rare event, like storm, in the real world by analysing activities in virtual
world. Their case study is based on Hurricane Sandy in 2012. Authors denotes the idea for social me-
dia activities temporal pattern construction.

Event detection technique depends on event characteristics and its category. Authors of [11] made
a survey on event detection techniques for natural disaster events, trending topics and public opinion
events in newswire, web forums, emails, blogs and microblogs. They defined that domain dependence
is a huge challenge for researchers because techniques are extremely situational dependent. Time con-
straint is another characteristic which is also varying according to event category. Authors discussed
techniques grouped by information flow between users: thematic, temporal, spatial and network struc-
ture. The survey includes researches on OSNs like Twitter, Facebook, Instagram, Youtube and Pinter-
est.

A huge survey [12] proposes definitions and categorizations in event detection process. The au-
thors classified 34 works by event types, pivot techniques, detection method, detection task and appli-
cation. The majority of researches were for detecting general interest events.

Researchers highlight relevance of event detection:

e “Event detection contains substantial information which describes different scenarios during
events or crisis. This information further helps to enable contextual decision making, regarding
the event location, content and the temporal specifications.”[11]

e  “Could be used as an emergency notification tools about a disaster that coming on, as reference to
manage traffic, as prediction tool for flu trends.”[8]

e  ”Better event description through sub-event detection”[6]

3. Cloud-Native Application

Since social media crawler works with large amount of continuously increasing amount of data, it
has several requirements for proper work.

1. Different Online Social Networks. Since social media crawler should work with different OSNs
then external APIs will be different. However internal data processing will be identical for all.

2. New OSNSs addition. This process should be gentle and simple. New resources should be given
for additional OSN.

3. Data pre-processing and analysing. Increasing data cause increasing of preprocessing and analys-
ing time.

In this section we are describing technology that fits our system requirements.

Elasticity is the degree to which the system is able to adapt to changes in workload by providing
and removing resources in an autonomous approach, such that at any given time, the available re-
sources are as close as possible to current demand [13].

Scalability. It can be differentiated into “structural scalability and load scalability. Structural
scalability is the ability of a system to expand in a chosen dimension without significant changes in its
architecture. Load scalability is the ability of the system to work correctly when the offered traffic in-
creases [14].

Self-service deployment - is understood as part of the application deployment topology to imple-
ment a specific technical unit [15]. More often, a unit of deployment is understood as a “standard con-
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tainer”. The goal of a standard container is to encapsulate a software component and all of its depend-
encies in a self-describing and portable format so that any compatible runtime can run it without addi-
tional dependencies, regardless of the underlying machine and the contents of the container. This is a
definition from the Open Container Initiative (OCI), which is explained in 5 principles of standard
containers [16].

Today there is a paradigm of software development, which lays in business processes and archi-
tecture solutions to the above issues. The paradigm is called Cloud-Native Application Development
(CNA Development) [17]. This term refers to a set of technologies and design patterns that have be-
come the standard for building large-scale cloud applications. Software development in this paradigm
provides the properties of successful cloud applications, including dynamic scalability, ultimate resili-
ency, non-disruptive upgrades, and security. To enable the creation of applications that meet these re-
guirements, we describe a microservices architecture that is central to cloud design.

The author of work [18] analysed more than 50 works related to the development of cloud appli-
cations, collected and summarized approaches, methods and terms. As a result, they define the term
Cloud-Native Application as follows: “A cloud application (CNA) is a distributed, flexible and scale-
out system of (micro) services that isolates state in a minimum of stateful components. The application
and each individual deployment module of this application are designed according to cloud-centric de-
sign patterns and run on a flexible self-service platform. ”

In [19], it was proposed to call such applications IDEAL, so that the application was [Isolated
state] isolated, [Distributed] had a distributed architecture, was [Elastic] flexible in the sense of hori-
zontal scaling, was controlled using [Automated] automated systems, and its components must be
loosely coupled. Creation of cloud applications in this paradigm leads to the following results [20]:

o faster provision of software solutions to the customer

e fault tolerance

e automation of recovery

e easy and fast horizontal scaling of applications
o the ability to process a huge amount of data

4. Results

In this section we will describe our architecture for social media data collection and processing,
Telegram as OSN case study and database structure.

4.1. System architecture

During this stage of the research we have developed a cloud architecture based on microservices.
Microservices are the decomposition of monolithic business systems into independently deployable
services that perform a single task. The main way to communicate between services in a cloud appli-
cation architecture is through published and versioned APIs (APIl-based collaboration). In our archi-
tecture microservices communicate via message queue.

The individual architecture deployment units are designed and interconnected according to a set
of cloud-oriented patterns such as a twelve-factor app [21], a Circut Breaker [22].

We use the flexible OpenStack platform, which is used to deploy and operate these microservices
through autonomous deployment units (containers). This platform provides additional operational ca-
pabilities on top of laaS infrastructures, such as auto-scaling application instances and scaling on de-
mand, application health management, dynamic routing, load balancing, and log and metrics aggrega-
tion.

In Figure 1 and Figure 2 we depicted the parsing process flow through our cloud architecture and
general view of architecture. On that figure microservices have symbol of ‘*’ near their names.

New message created in OSN detected and parsed by crawler. Firstly, crawler will save message
in database. Secondly, it will put textual content of the message in queue. Queue service has an ex-
change area and defined queues. Tokenization consumer receive its data through queue. Consumer is
located in data processing microservice. This microservice will be exposed later with other processing
tools. After data pre-processing and processing, all extracted information go to database.
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4.1. Telegram

Nowadays social networks developers usually provide public tools or libraries to interact with
their system and its data. It was mentioned above that Telegram becomes more and more popular. We
decided to construct our social media crawler firstly based on Telegram OSN.

Telegram is an OSN which provides several communication ways. Users can communicate with
each other in private chats, tet-a-tet, or create chat for more than two users. In telegram people can
create channels where they post anything and other users may subscribe on them. Channels are similar
to newswires.

According to official Telegram Database Library (TDLib) provided by Telegram, we have con-
structed our Client API application [4]. This application works under Telegram APl Terms of Service
and needs real registered user in original Telegram. Client API needs application authorization. We
have created application in Telegram with real registered phone number. Application Id used for au-
thorization in Client API. In case of breach of terms, the access to Telegram API will be discontinued
via application id. Client API handles all the activities of authorized user. Client was added to public
groups and channels of different interest like IT, politics, news, cinema, money, psychology. New
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messages and posts go through our application and go to database. Client API written on Java. TDLib
is written on C, but it already has native Java (using JNI). For database we used PostgreSQL.

4.2. Database architecture

TDLib allows to collect a lot of information about users, chats and messages. The Figure 3 shows
relational model diagram of our database.
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Figure 3. Database structure

The first implemented preprocessing task was message text tokenization. The token in our case is
unigram. Before tokenization, text is cleared from Russian stop-words. Each token has its count within
users’ messages and chats’ messages. For example, in Kazakhstan during COVID-19 pandemic and
state of emergency, government pays 42500 tenge of compensation for people who lost their job or in-
come. This 42500’ token has total count greater than 9000 among chats, but it was mainly forced by
conversations in one news channel. The biggest count among users is 194.

From 19.02.2020 we are collecting messages from public groups and channels from Kazakhstan.
At the beginning of April we included chats from Russia, Belarussia, Ukraine and Uzbekistan. On
25.10.2020 database consists of 2141 chats, 242 000 users and 840 648 messages

5. Conclusion

We have developed highly loaded, fault-tolerant, scalable system for social media data collection
using Cloud Native Application Development paradigm. Crawler collects messages from 2141 Tele-
gram chats. Data processing microservice designed as scalable unit which could be easily exposed
with additional tools. In future works we will detect events and go further to our main research goal.
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