
 

 

 

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

Testing of Vulkan Visualization for Geo-Models on Mobile 

Devices and Desktop Systems with Ray Tracing GPUs 

M. Mustafin2, O. Turar1*, D. Akhmed-Zaki1 

1 University of International Business; 2 Kazakh National University 

 

 

Summary 
 
The paper describes development and comparison tests for high performance visualization of geological models 

on different platforms. It’s motivated by paradigm of ubiquitous computations using distributed systems where 

any device can potentially act as platform of client interface for the simulator.  

Nowadays most of mobile devices have valuable computational resources and thus may be used as platform for 

scientific computations. So, we present visualization of geological models given in the eclipse format for mobile 

devices. For rendering we applied standard rasterization pipeline of Vulkan framework with direct coloring of 
polygons based on numerical values of physical parameters. Such approach leads to necessity of the whole buffer 

substitution in cases of changing values in new time steps. For this purpose, we implemented double buffering 

algorithm for vertex buffers used to store color data. To test the performance of visualization comparisons were 

made based on real time rendering frames per second for geological model differing in cell count.  

Also, we implemented and tested geological model visualization performance on advanced desktop stations with 

leading GPU devices with the implementation of Ray Tracing algorithms. Even though ray tracing algorithm was 

invented for photorealistic visualization it can show drastic increase of rendering performance due to logarithmic 

complexity of intersection search algorithms. Because of that it was expected that ray tracing algorithm will show 

better performance on grid models with high number of cells. In the case of small grids its performance will be 

lower than performance of rasterization algorithm but its irrelevant due to the overall quickness of such 

visualization. 
Tests shown in the paper mostly confirm that expectations. However, in such comparisons certain additional 

moments must be considered. Performance of ray tracing algorithm is based on the number of screen fragments 

or pixels alongside with the number of primitives on the screen. Also, it affects pixel number, or, in other words, 

percentage of screen, covered by the model. Thus, we show different tests that consider that feature. 

 

 



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

Introduction 
 
The development of two-dimensional and three-dimensional data visualization systems for analyzing 
the results of numerical modeling is one of the developing and important directions. Presentation of 
results in graphical form improves perception and use by specialists. Using the latest technologies, an 
application has been developed and tested for visualizing the results of calculations for oil and gas field 
in real time. 
 
In this field there is a high necessity of convenient data presentation methods, which led to the 
developed industry of specialized software for visualization of results for numerical computations in 
various ways. Unlike most other fields of a scientific visualization the visualization in oil and gas field 
implements classic polygonal render to present a geometry model of the field. Geological models of the 
oil fields are usually too large in terms of the number of elements to be easily visualized with a proper 
frame rate. The problems were related to the fact that the computations are carried on the supercomputer 
systems, while the visualization works on the client device. Recently certain ways of visualization of 
drastically big amount of polygons were presented [1]. 
 
The purpose of this study is a high-quality and continuous visualization of mesh models. In this work, 
a high-performance mobile and computer application was developed. The use of modern technologies 
and equipment of graphic processors contributed to increased productivity. In the study, different 
geomodels were taken as input data for health testing, and a three-dimensional cube model was used as 
input data for performance testing. The finished program should visualize the results of any numerical 
mathematical modeling with high performance. The visualization technologies used are described in 
the next chapter. 
 
Visualization was implemented on computers and mobile devices using Vulkan technology. Today, 
almost all devices (PCs, mobile phones, tablets) support Vulkan technology. The main advantage of the 
low-level Vulkan API is direct access to the hardware resources of the GPU and load balancing between 
the CPU and GPU. Thus, you can achieve high performance and long battery life for mobile devices. 
Also, A 3D visualization module using the latest real-time Vulkan Ray Tracing technology has been 
developed and tested. That visualization module, also visualizes various models in real time, which 
allows you to visually monitor changes in any process. 
 
Using Vulkan technology, 3D visualization modules have been developed for desktop computers 
equipped with a discrete graphics card and mobile devices based on the android operating system.  
 
Today, there are several software interfaces that use two-dimensional and three-dimensional computer 
graphics, such as OpenGL, DirectX and Vulkan. OpenGL is a high-level graphical device programming 
interface [2, 3, 4]. The OpenGL receiver is the Vulkan graphics API, but they are very different. Vulkan 
API specifications can be found in the literatures [5, 6, 7, 8]. Vulkan only supports the shader language 
SPIR-V [9].  
 
Research [10] studies high-performance APIs and makes detailed comparisons between standard 
OpenGL and the latest APIs such as Vulkan and DirectX 12. The main difference between Vulkan 
technology and DirectX 12 in cross-platform. DirectX 12 is only available for Windows 10 PCs, while 
Vulkan is available for almost all devices (PCs, mobile phones, tablets). 
 
In the paper, we develop an application for visualizing oil fields on mobile and desktop platforms using 
Vulkan technology and conduct a thorough performance analysis of large models’ visualization. The 
paper [11] analyzes the performance of computing on mobile and desktop platforms using the same 
technology.  
 
In the work [12, 13] developed optimized algorithms for visualizing the results of numerical 
mathematical modeling on structured grids using the OpenGL shader language library, while our work 
uses Vulkan technology and a ready-made module visualizes any results of numerical mathematical 



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

modeling on structured and unstructured grids, and to improve performance, we use Vulkan Real Time 
Ray Tracing Technology [14, 15]. Like in most of those publications, effectiveness of the visualization 
method is measured by comparing amount of visualized frames per second using different technologies. 
 
Also, need of high performance visualization of the oil-gas field computation results is related to the 
availability of high performance computations of such problems. Such research is shown on previous 
work of the authors [16 - 19]. 
 
 
Methods 
 
To test and compare several visualization modules, we need to define the method of measuring the 
effectiveness of the visualization. We tried to achieve smooth transformation manipulations of the 
geometry model of the oil field. The smoothness of animation is defined by the rate of frames presented 
on screen per second (FPS). Comfortable and convenient amount of FPS may vary for different people, 
but in most cases, it must be above 40 in scientific applications. Some users prefer the values above 60. 
In the paper we will consider, compare and analyze on the base of much higher values of FPS. This is 
because the further increasing of the geometry model will lead to proportional changes of the FPS 
amount.  
 
To achieve highest numbers possible to visualize using developed modules we used generated models 
based on simple cube geometry. 
 
Visualization technologies 
 
There are two methods for converting a 3D model to a two-dimensional image for display on the screen: 
rasterization of the 3D model and ray tracing. Usually used rasterization method. The method of 
rasterization is as follows. The primitives of the 3D model are projected onto the plane of the screen 
and, using special algorithms, the color of each pixel lying inside the projected primitives is obtained.  
 
Ray tracing is a method of creating three-dimensional models using a principle similar to real physical 
processes. A ray is generated from the camera for each pixel of the screen to the object, then the pixel 
is colored at the intersection with the object of the ray. An example of rasterization and ray tracing can 
be seen in Figure 1. 
 

  
a)      b) 

Figure 1 a) rendering method of rasterization, b) rendering method of ray tracing. 
 
There are the following elements and concepts for working with ray tracing: 

• Acceleration structures - a special object that encapsulates the internal picture of the geometry. It 
can be considered as a type of tree (BVH) that speeds up the search for intersections of the 
beam and geometry. 

• Shader Binding Table (SBT) - a data structure that allows the API to send several shaders (and / 
or its individual stages) for ray tracing, and then dynamically call the shader from this shader 
table. 



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

• A new command that starts ray tracing (vkCmdTraceRaysNV). 
• A new pipeline that can work with a shader table for ray tracing. 

 
The computer application was implemented using the latest extensions for ray tracing via the Vulkan 
API 
 
Vulkan is an API for graphic computing devices. Vulkan is a cross-platform API for high-performance 
graphics access and computing on modern graphics cards. It can be used for heterogeneous devices 
such as GPUs, mobile devices, and tablets. Vulkan provides applications with direct control over 
graphics acceleration to improve efficiency and performance. Vulkan is the only high-performance 
graphical API that works with several operating systems including Windows, Linux, and Android. 
 
The application for visualizations on computers was implemented using the Visual Studio 
C++programming environment. The Visual Studio programming environment and the NDK Toolkit 
were also used to develop the mobile application. The input data for visualization are the results of 
calculations of various problems. They contain the geometry and different characteristics of the 
reservoir and have the GRDECL format. Figure 2 shows visualization applications for mobile and 
desktop devices. On mobile devices, this data must be located in a special application folder called 
"Assets", and special classes and functions of AAssetManager are used to initialize this data. 
 
Reading files using the AAssetManager method is similar to the method for working with files from 
stdio.h. In the AASSetManager class, AAsset_open is used instead of fopen, aasset_read is used instead 
of fread, and AAsset_close is used instead of fclose. For initializing files, the assets folder was created 
and the input data of the model was placed. In applications for reading this data, a dynamic file of the 
AAsset type is created, and the AASSET_MODE_BUFFER type is assigned. Then the file length is 
determined (the file length is equal to the number of elements in the file), and a dynamic array of the 
char type is created with the size of the file length. Then data is read from the file and written to an 
array with the char type, and the program reads data from this array. 
 
Visualization modules developed using the Vulkan API for mobile devices and desktop systems 
visualize same models, presented in the same format, as it is shown on the figure 2. 
 

  
Figure 2 Application for mobile and desktop devices. 

 
Test measurements  
 
A personal computer (Core i7 3770 3.40 GHz, 16Gb DDR3) equipped with a discrete graphics card 
(nVidia GeForce RTX2080 ti, 11Gb GDDR6) was used for performing tests of the visualizer on 
computers, and for mobile devices - Meizu 16th mobile phone (Qualcomm SnapDragon 845, 6 Gb, 
64Gb, Qualcomm Adreno 630). Table 1 describes the characteristics of the devices used for testing. 
 
 
 
 



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

 Nvidia Geforce 2080 ti Adreno 630 
Number of computing blocks 4352 256 
Theoretical performance 28,5/14,2 TFlops 727 GFlops 
Memory interface 352 bit 16 bit 
Memory Speed 14000 MHz 1866 MHz 
Memory bandwidth 448 GB/s 29,9 GB/s 
Memory Size 8 ГБ GDDR6 LPDDR4X 

Table 1 Characteristics of GeForce 2080 ti and Adreno 630 graphics devices. 
 
Comparison of visualization modules for computers and mobile devices. For comparison we used a 
three dimensional model of a cube with different sizes and filled with random colors shown in figure 3 
 

 
Figure 3 A three-dimensional model of the cube. 

 
A comparison of the performance when rendering a three-dimensional model on different platforms 
with different model sizes is shown in Table 2. 
 

Size Mobile device PC 
10x10x10 60 4300 
20x20x20 60 4500 
50x50x50 60 3400 
80x80x80 60 1900 

100x100x100 45 1370 
120x120x120 37 894 
140x140x140 24 615 

Table 2 The number of frames per second when rendering a three-dimensional model. 
 

 
Figure 4 A graph of the number of frames per second when visualizing an approximate three-
dimensional model. 

0

1000

2000

3000

4000

5000

10x1
0x1

0

20x2
0x2

0

50x5
0x5

0

80x8
0x8

0

100x1
00x1

00

120x1
20x1

20

140x1
40x1

40

Mobile device PC



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

 
A comparison of the number of frames per second when visualizing very large two-dimensional grids 
using Vulkan rasterization and ray tracing is shown in table 3. 

 

Size Number of grids Vulkan rasterization 
(FPS) Vulkan RT (FPS) 

100x100 20,000 3500 2600 
500x500 500,000 3600 1285 

1000x1000 2,000,000 1650 1095 
2000x2000 8,000,000 650 1005 
3000x3000 18,000,000 265 585 
4000x4000 32,000,000 155 625 
5000x5000 50,000,000 100 600 
5700x5700 64,980,000 78 610 

Table 3 Number of frames per second when visualizing various large-size grids. 
 
Each grid cell consists of two triangles, so the number of polygons is twice the number of cells. 
 
As can be seen in table 3, when visualizing using the rasterization method in small sizes, i.e. up to about 
2000x2000 or up to 8,000,000 nodes, the number of frames per second is greater than the number of 
frames per second when visualizing using the ray tracing method. However, as the size of the model 
increases, the results of visualization using the ray tracing method exceed the results of the rasterization 
method. The rasterization method shown in the graph in figure 5 shows that the result decreases with 
increasing size, while the ray tracing method shows a stable result at a size of more than about 18 million 
nodes. 

 

 
Figure 5 Relative graph of the number of frames per second when using rasterization and ray tracing 
methods. 

 
In addition, the more the grid model occupies the area of the program window, i.e. the closer the model 
is to the screen, the more it affects performance, and the difference between the two methods changes. 
The results of visualizing an approximate model using the dimensions in table 3 are shown in table 4. 
 
As can be seen from table 4, the rasterization method works more efficiently than the ray tracing 
method, up to 4000x4000, but at large sizes, the ray tracing method shows a stable result, and the 
number of frames per second of the rasterization method decreases. The reason for reducing the result 
of the rasterization method is that during rasterization, the projection of each node is projected onto the 
screen plane and pixels are painted over, so as the number of nodes increases, the number of 
rasterization processes increases. The ray tracing method generates rays through the screen plane, so 

0
500

1000
1500
2000
2500
3000
3500
4000

100x1
00 (2

0000)

500x5
00 (5

00000)

1000x1
000 (2

000000)

2000x2
000 (8

000000)

3000x3
000 (1

8000000)

4000x4
000 (3

2000000)

5000x5
000 (5

0000000)

5700x5
700 (6

4980000)

Vulkan

VulkanRT



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

the number of frames per second decreases as the model approaches the program window, but the graph 
in figure 6 shows that the ray tracing method works better with large grids than the rasterization method. 
 
 

Size Number of grids Vulkan rasterization 
(FPS) Vulkan RT (FPS) 

100x100 20000 3500 2340 
500x500 500000 3600 1000 

1000x1000 2000000 1660 400 
2000x2000 8000000 660 207 
3000x3000 18000000 265 166 
4000x4000 32000000 157 166 
5000x5000 50000000 102 149 
5700x5700 64980000 77 200 

Table 4 The number of frames per second when visualizing various large grids of an approximate 
model. 
 

 
Figure 6 Graph of the number of frames per second when visualizing various large grids of an 
approximate model. 

 
In addition, the dimension of the grid model affects performance, and the difference between the two 
methods also changes. Table 5 shows a comparison of the number of frames per second of the two 
methods for visualizing three-dimensional grids. The cube model was used for comparison. 
 

Size Number of grids Vulkan rasterization 
(FPS) Vulkan RT (FPS) 

10x10x10 2000 3400 2450 
20x20x20 16000 3600 2350 
50x50x50 250000 3300 2240 

100x100x100 2000000 1460 1700 
150x150x150 6750000 515 1550 
200x200x200 16000000 255 1325 
250x250x250 31250000 146 1120 
280x280x280 43904000 109 1000 
300x300x300 54000000 88 900 

Table 5 The number of frames per second when visualizing various three-dimensional grid models. 
 
As can be seen from table 5, the ray tracing method shows several times higher performance than the 
rasterization method when rendering models larger than 100x100x100. Since in the case of rasterization 

0
500

1000
1500
2000
2500
3000
3500
4000

100x1
00 (2

0000)

500x5
00 (5

00000)

1000x1
000 (2

000000)

2000x2
000 (8

000000)

3000x3
000 (1

8000000)

4000x4
000(32000000)

5000x5
000 (5

0000000)

5700x5
700 (6

4980000)

Vulkan

VulkanRT



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

all the nodes of the model are taken into account, and in the case of ray tracing, the ray returns only the 
color at the intersection, and the invisible layers behind are not taken into account, therefore, for three-
dimensional models, the ray tracing method gives good performance. The results of table 4 are shown 
in the graph in figure 7. 
 

 
Figure 7 Graph of the number of frames per second when visualizing a three-dimensional grid model. 
 
The results of visualization of an approximate three-dimensional model are shown in Table 6 and on 
the graph in figure 8. 

 
 

Size Number of grids Vulkan rasterization 
(FPS) Vulkan RT (FPS) 

10x10x10 2000 3350 2160 
20x20x20 16000 3500 2200 
50x50x50 250000 1840 1980 

100x100x100 2000000 770 1690 
150x150x150 6750000 358 1410 
200x200x200 16000000 200 1270 
250x250x250 31250000 120 1230 
280x280x280 43904000 88 1130 
300x300x300 54000000 75 1060 

Table 6 The number of frames per second when visualizing various large grids of an approximate three-
dimensional model. 
 
Analysis and discussion 
 
Analyzing the results obtained when comparing visualization modules on mobile and desktop devices 
in Table 2, we can see that the mobile device limits the number of frames per second when rendering 
the model to a size of 80x80x80, and FPS is 60. When visualizing a model larger than 80x80x80 cells, 
the number of FPS is reduced to 24. The results obtained on the desktop GPU are very high and starts 
from 4300 FPS when working with small-size models and decreases to 615 FPS as the size increases. 
 
Table 3 shows the results of FPS when rendering a two-dimensional model on a desktop GPU using the 
rasterization and ray tracing method. Visualization by rasterization method to the size 2000x2000 shows 
1650 frames per second, and in the ray tracing method, the FPS is equal to 1095. As the model size 
increases, the fps of ray tracing rendering exceeds the results of the rasterization method. In table 4, you 
can see the FPS results of an approximate two-dimensional model. When drawing an approximate 
model to a size of 3000x3000, you can see that the rasterization method shows more FPS than the ray 

0
500

1000
1500
2000
2500
3000
3500
4000

10x1
0x1

0 (2
000)

20x2
0x2

0 (1
6000)

50x5
0x5

0 (2
50000)

100x1
00x1

00 (2
000000)

150x1
50x1

50 (6
750000)

200x2
00x2

00 (1
6000000)

250x2
50x2

50 (3
1250000)

280x2
80x2

80 (4
3904000)

300x3
00x3

00 (5
4000000)

Vulkan

VulkanRT



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

tracing method, but with large cell sizes, the number of frames per second when rendering by the 
rasterization method is lower than the number of frames per second when rendering by the ray tracing 
method. 
 
 

 
Figure 8 Graph of the number of frames per second when visualizing various large grids of an 
approximate three-dimensional model. 
 
 
Table 5 shows the results of FPS when rendering a three-dimensional model on a desktop GPU using 
the rasterization and ray tracing method. You can see from the table that rendering using ray tracing 
shows a higher FPS than the rasterization method when rendering a model larger than 100x100x100. 
Table 6 shows the FPS results of an approximate three-dimensional model. Here you can see that 
starting from the size 50x50x50 of the three-dimensional model, the number of frames per second when 
rendering using ray tracing is several times greater than the number of frames per second when 
rendering by rasterization.  
 
When visualizing three-dimensional models, using a desktop GPU is more efficient than using a mobile 
device. Because when comparing the results of these two devices, the desktop device showed a higher 
FPS, which means that the desktop device is more useful for visualizing very large geological models. 
But the mobile device, despite the low performance, showed not a bad result for such platforms. 
 
As a result of comparison, the rasterization method showed good performance at small sizes, but as the 
size of the grid model increases, the ray tracing method showed stable and high performance. However, 
as you approach the model, you can see that the number of frames per second varies significantly in the 
ray tracing method. This is because the area of the desired ray increases, and the rasterization method 
does not change the number of operations, so it does not change significantly, since each cell is projected 
onto the screen. In addition, when visualizing three-dimensional grid models, the ray tracing method 
showed higher performance than the rasterization method. This is because the rasterization method 
calculates the projection of each cell on the plane of the screen, and the ray tracing method does not 
consider the invisible parts of the object.  
 
Such behavior is mostly expected, because those two methods have different algorithmic complexity. 
Let’s temporary ignore the fact of its parallelization to the big amount of threads. Then rasterization 
algorithm acts as brute force algorithm, and linearly processes all the polygons each frame. While the 
algorithm of ray tracing processes only goes from the root of the spatial tree of polygons to its leaves, 
which means it has logarithmic complexity. That logarithm is multiplied to the amount of rays that can 
be considered as constant, because it is related only to the screen size. Thus we compare two functions: 
linear for rasterization, and logarithmic with some constant multiplied in the case of ray tracing. The 
fact that from some point logarithmic function will always be lesser than the other function is obvious. 

0
500

1000
1500
2000
2500
3000
3500
4000

10x1
0x1

0 (2
000)

20x2
0x2

0 (1
6000)

50x5
0x5

0 (2
50000)

100x1
00x1

00 (2
000000)

150x1
50x1

50 (6
750000)

200x2
00x2

00 (1
6000000)

250x2
50x2

50 (3
1250000)

280x2
80x2

80 (4
3904000)

300x3
00x3

00 (5
4000000)

Vulkan

VulkanRT



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

However, it is necessary to show experimentally, that the mentioned point can be achieved in practice. 
Such experiments are shown in this paper. The fact of GPU parallelization does not critically affect to 
this comparison due to the fact that system automatically launches most possible amount of threads. 
Thus in both algorithms there are similar parallelization effectiveness. 
 
Therefore, for visualization of three-dimensional large grid models, it is advantageous to use the ray 
tracing method. 
 
Conclusion 
 
This paper describes the work on developing a high-performance mobile and computer application. The 
results of a mobile application using the Vulkan API and a computer application using the raserization 
method and ray tracing method are obtained. A different-sized cube model was used as input data for 
performance testing. Comparative analyses of the results of visualization modules for mobile and 
desktop devices, and comparative analyses of the results of a computer application using two methods 
were performed. Comparing of results and further analysis show that using ray tracing algorithms may 
be effective in cases of visualization of large amount of polygons/cells in geological model. Mobile 
devices does show efficiency of visualization that is enough to use it as client side application with 
geological models with several millions of polygons. 
 
Acknowledgments 
 
This research was funded by the Science Committee of the Ministry of Education and Science of the 
Republic of Kazakhstan (Grant No. BR05236447). 
 
References 
 
[1] A first look at Unreal Engine 5, 2020 - https://www.unrealengine.com/en-US/blog/a-first-look-

at-unreal-engine-5 
[2] Mark S., Kurt A. “The OpenGL Graphics System: A Specification.” (2008). 
[3] Sellers G., Wright R.S. Jr., Haemel N. OpenGL SuperBible: Comprehensive Tutorial and 

Reference (6th Edi‐ tion). Addison‐Wesley Professional; 6 edition (July 31, 2013) 2013 P. 848. 
[4] OpenGL programming guide : the official guide to learning OpenGL, version 4.3 / Dave 

Shreiner, Graham Sellers, John Kessenich, Bill Licea-Kane ; the Khronos OpenGL ARB 
Working Group.---Eighth edition. 

[5] Khronos Group. Vulkan. https://www.khronos.org/vulkan/. Accessed: 2017-11-13. 
[6] Sellers G., Kessenich J. Vulkan Programming Guide: The Official Guide to Learning Vulkan. 

Addison-Wesley Professional; 01 edition (31 Oct. 2016), p. 478. 
[7] Khronos Vulkan Working Group. Vulkan 1.0.98 - A Specification (with KHR extensions). 

1.0.98. Jan. 2019. 
[8] Pawel Lapinski, Vulkan Coockbook. Work through recipes to unlock the full potential of the 

next generation graphics API—Vulkan. Packt Publishing Ltd. Birmingham (2017). 
[9] Khronos Group. SPIR Overview. https : / / www . khronos . org / spir/. Accessed: 2018-03-03. 
[10] Shiraef, Joseph A. “An exploratory study of high performance graphics application 

programming interfaces.” (2016). 
[11] N. Mammeri and B. Juurlink, "VComputeBench: A Vulkan Benchmark Suite for GPGPU on 

Mobile and Embedded GPUs," 2018 IEEE International Symposium on Workload 
Characterization (IISWC), Raleigh, NC, 2018, pp. 25-35 

[12] Badretdinov M. R. , Badretdinov T. R. , Borshchuk M. S., Primeneniye biblioteki opengl dlya 
vizualizatsii rezul'tatov chislennogo  matematicheskogo modelirovaniya  na setkakh bol'shoy 
razmernosti [Using the opengl library to visualize the results of numerical mathematical 
modeling on large-dimensional grids], Vestnik UGATU, 2015.  № 4. 84-94 

[13] Abraham, Frederico & Celes, Waldemar. (2009). Distributed Visualization of Complex Black 
Oil Reservoir Models.. 87-94. 10.2312/EGPGV/EGPGV09/087-094. 



 

 

 
ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event 

[14] Khronos Group. Ray Tracing In Vulkan. – https://www.khronos.org/blog/ray-tracing-in-
vulkan#raytracing1a Accessed: 2020-03-25. 

[15] NVIDIA Vulkan Ray Tracing Tutorial – https://developer.nvidia.com/rtx/raytracing/vkray 
Accessed: 15.02.2019. 

[16] D.Zh. Akhmed-Zaki, T.S. Imankulov, B. Matkerim, B.S. Daribayev, K.A. Aidarov, O.N. Turar. 
Large-scale simulation of oil recovery by surfactant-polymer flooding. Eurasian Journal of 
mathematical and computer applications. – 2016. Volume 4, Issue 1. – P. 12-31. 

[17] Akhmed-Zaki D.Zh., Daribayev B.S., Imankulov T.S., Turar O.N. High-performance 
computing of oil recovery problem on a mobile platform using CUDA technology. Eurasian 
Journal of mathematical and computer applications. – 2017. Volume 5, Issue 2. – P. 4-13. 

[18] T.S. Imankulov, D.Zh. Akhmed-Zaki, B.S. Daribayev and O.N. Turar. HPC Mobile Platform 
for Solving Oil Recovery Problem. Proceedings of the 13th International Conference on 
Informatics in Control, Automation and Robotics (ICINCO 2016), Volume 2 Lisbon, Portugal.  
29 - 31 July 2016. – P. 595-598. 

[19] Akhmed-Zaki D., Danaev N., Mukhambetzhanov S., Imankulov T. Analysis and Evaluation of 
Heat and Mass Transfer Processes in Porous Media Based on Darcy-Stefan's Model. ECMOR 
XIII - 13th European Conference on the Mathematics of Oil Recovery. 2012 

[20] Klochkov M. A. "K resheniyu zadachi vizualizatsii rezul'tatov modelirovaniya protsessov 
razrabotki neftegazovykh mestorozhdeniy" ["Towards a solution to the problem of visualizing 
the results of modeling oil and gas field development processes"], Proceedings of the Institute 
of Mathematics and Computer Science, Udmurt State University, vol. 49, 2017, pp. 3-16. 

[21] E.A. Gladkov. Geologicheskoye i gidrodinamicheskoye modelirovaniye mestorozhdeniy nefti 
i gaza: uchebnoye posobiye [Geological and hydrodynamic modeling of oil and gas fields: a 
training manual]. Tomsk Polytechnic University. - Tomsk: Publishing House of Tomsk 
Polytechnic University, 2012. - 99 p. 

[22] Mullen, Tim R., Christian Kothe, Yu M. Chi, Alejandro Ojeda, Trevor Kerth, Scott Makeig, 
Gert Cauwenberghs and Tzyy-Ping Jung. “Real-time modeling and 3D visualization of source 
dynamics and connectivity using wearable EEG.” 2013 35th Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013): 2184-2187. 


