The 4th Congress of the Turkic World Mathematical Society (TWMS) Baku, Azerbaijan, 1-3 July, 2011

ON A CORRECT SOLVABILITY SEMIPERIODICAL BOUNDARY VALUE PROBLEM FOR LINEAR HYPERBOLIC EQUOTION

Symbat S. Kabdrakhova Institute of Mathematics MES RK, Almaty, Kazakhstan, e-mail:S_Kabdrachova@mail.ru

We consider on $\overline{\Omega} = [0, \omega] \times [0, T]$ semiperiodical boundary value problem for linear hyperbolic equation with two independet variables

$$\frac{\partial^2 u}{\partial t \partial x} = A(x,t)\frac{\partial u}{\partial x} + B(x,t)\frac{\partial u}{\partial t} + C(x,t)u + f(x,t), \tag{1}$$

$$u(0,t) = \psi(t), \quad t \in [0,T],$$
(2)

$$u(x,0) = u(x,T), \quad x \in [0,\omega],$$
 (3)

where A(x,t), B(x,t), C(x,t), f(x,t) are continuous functions on $\overline{\Omega}$, function $\psi(t)$ is continuousdifferentiable on [0,T] and satisfies condition $\psi(0) = \psi(T)$.

Let's $C(\overline{\Omega})$ is space of continuous function $u: \overline{\Omega} \to R$ on $\overline{\Omega}$ with norm $||u||_C = \max_{\overline{\Omega}} |u(x,t)|.$

In this paper we are investigated correct solvability of the problem (1)-(3). Necessary and sufficient conditions of correct solvability of semiperiodical boundary value problem are received for linear hyperbolic equation with two independent variables in the term coefficient A(x, t) and T.

Definition. Boundary value problem (1)-(3) is called correct solvability, if for any $f(x,t) \in C(\Omega)$ and cotinuous- differentiable function $\psi(t)$ on [0,T], it has unique solution u(x,t) and is valid

$$\max\left\{\|u\|_{C}, \|u_{x}\|_{C}, \|u_{t}\|_{C}\right\} \le K \max\left\{\max_{t \in [0,T]} |\psi|, \|f\|_{C}\right\}$$

where K is constant, not depending from $f(x,t), \psi(t)$.

Thorem. Boundary value problem (1)-(3) is correct solvability if and only if, when for some $\delta > 0$ the following inequality holds $\left|\int_{0}^{T} A(x, \tau) d\tau\right| \geq \delta$ for any $x \in [0, \omega]$.

Was built examples, showing importance of conditions of the theorem.