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Abstract 
 
This article considers the numerical solution of the inverse pharmacokinetics problem for a three-compartment linear 
model. First, the article presents some reviews of the pharmacokinetics problem and the three-compartment model. The 
following describes the formulation of the pharmacokinetics problem for a three-compartment linear model. The direct 
problem is the Cauchy problem for systems of ordinary differential equations. Solving the direct problem analytically, 
we find the concentration for the first compartment, since it is the object of the study. The formulation of the inverse 
problem is reduced to a nonlinear operator equation. For the inverse problem, seven coefficients concentration for the 
first compartment should be found for some additional information of a given concentration. The inverse problem is 
reduced to minimizing the objective functional. For the numerical solution, an adaptive search method is used genetic 
algorithm. The numerical results of this problem are given.  
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1. Introduction  
 
Pharmacokinetic models are widely used as a means of 
forecasting the disposition of drug in the body. This can be 
predicted by modeling the simultaneous distribution of drug 
through body tissue and clearance [1]. The fundamental 
pharmacokinetic concepts are volume and clearance. The 
time required to remove the drug from the body is 
determined by the ratio of volume to clearance [2]. Kinetics 
is defined as the rate of change of drug concentration 
expressed in units of concentration per unit of time. [3]. A 
compartment in the compartmental model is defined as a 
quantity of a substance which has uniform and perceptible 
kinetics of transformation and transport [4-6]. 
 Pharmacokinetics studies on the way the body deals with 
absorption, distribution, metabolism, and excretion of drugs 
under investigation expressed in mathematical terms [7]. 
Applied pharmacokinetics is a challenging clinical discipline 
with a strong theoretical framework for impoving patient 
outcomes by controlling for variability in drug disposition 
among individuals [8]. 
 Pharmacokinetic analysis is performed by non-
compartmental (model independent) or compartmental 
methods. Compartmental pharmacokinetic analysis uses 
pharmacokinetic models to describe and predict the 
concentration-time curve. The main advantage of 
compartmental methods over non-compartmental methods is 
the ability to predict the concentration [7]. Multi-
compartment modeling requires the adoption of several 
assumptions, such that systems in physical existence can be 

modeled mathematically: 
1. Instant homogeneous distribution of materials within a 
compartment; 
2. The exchange rate of materials among the compartments 
is proportional to the densities of 
these compartments. Such as the transfer rate from 
compartment i to compartment j is kijAi, while Ai is the 
mass of drug in compartment i and kij is a rate constant; 
3. Usually, it is desirable that the materials do not undergo 
chemical reactions while transmitting among the 
compartments [9]. 
 In practice the number of compartment is usually limited 
up to 3, since biological and assay variability do not permit 
estimation of additional coefficients and exponents from the 
observed data [10]. The poly-exponential disposition 
function can be mathematically transformed into a multi-
compartment mammillary model with drug administration 
into a central compartment and transfer by first-order 
processes into peripheral compartments [11].  
 In 1968, Kruger-Thiemer first proposed a two-
compartment model to achieve and maintain the steady state 
of blood drug concentration [8, 12]. The results 
demonstrated that a loading dose was necessary to fill up the 
initial volume of distribution in order to achieve steady state. 
In 1981, Schwilden proposed a method to maintain a 
constant drug concentration of central compartment (c1) in a 
three-compartment model [10].  
 
 
2. Formulation of the problem 
 
The differential equations describing the dynamics of 
changes in the number of drugs in the three-compartment 
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linear model are calculated by the following formulas: 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

 
initial conditions are added to the system of equations (1)-
(5): 
 

,  (6) 
 
 Problems (1) - (6) describe the process of distribution of 
drug in the body. In this problem, the body is divided into 
three compartments. Compartment 1, the so-called central 
compartment, is a part of the body, at all points of which the 
concentration of the drug is C1(t). It consists of the heart and 
blood systems. Compartment 2 is the organs with high blood 
supply (kidneys, liver, lungs). The rest of the body belongs 
to Compartment 3 consisting of tissues with low blood 
supply (fat, bones, muscles, etc.) [13]. 
 Let m0 be the amount of the drug at the injection site, and 
m1, m2, m3, mel are its quantitative values in Compartments 1, 
2, 3, respectively. V1 a volume of blood. Then the 
concentration of the drug is calculated by the formula: 
 
Ca(t)=ma/V1, C1(t)=m1/V1, C2(t)=m2/V1, C3(t)=m3/V1, 
Cel(t)=mel/V1. 
 
 We consider the reaction system having the following 
scheme: 
 
 Then we divide equations of the system (1)-(6) and 
initial data by the corresponding volumes V1, and we get a 
system of differential equations for concentrations 
Ca(t, C1(t), C2(t), C3(t), Cel(t): 
 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 

 
with initial data: 

. (12) 
 

Solving the system (7)-(11) with the initial conditions 
(12), we find the function describing the concentration 
behavior in the central compartment: 

 

 
here:  

,  (13) 

 (14) 
,  (15) 

,  (16) 

,  (17) 

,  (18) 

 
In the direct problem (7)-(12) we find  on the 

following data . We find a 
function of the concentration in Compartment 1 via an 
analytical way: 
 

      (19) 
 
To solve the direct problem the values of the parameters are 
ka=1.5, k12=1.0, k13=1.0, k21=0.15, k31=0.1, kel=0.1, C0=5.0. 
We build a graphic of the function  on the segment 
[0;10] (fig. 1): 
 

 
Fig 1. A graphic of the function  

 
 
3. The inverse problem 
 
Then we consider the values of the function 

 in the set of points 
and the operator associating a vector 

 consisting of 7 components with 
a vector consisting of the values of the function  at 
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determine the seven unknown q values, we have a system of 
M nonlinear equations: 

 (20) 
 

, . 

 
 Operator A is nonlinear. Thus, we solve the inverse 
problem using the measured concentration data at M points, 
looking for the vector q, as a solution to the nonlinear 
equation (20) [14 - 16]. The solution to problem (20) is 
sought by minimizing the objective functional 
 

 (21) 
 
 
4. The genetic algorithm 
 
Genetic algorithms are adaptive search methods that have 
recently been used to solve optimization problems. They use 
both an analogue of the mechanism of genetic inheritance, 
and an analogue of natural selection. 

Parent selection operators. Breeding states that only 
individuals whose fitness value is not less than a threshold 
value, for example, the average fitness value for a population 
can become parents. This approach provides faster 
convergence of the algorithm. However, due to the rapid 
convergence, the selective choice of the parent pair is not 
suitable when the task of determining several extremes is 
posed, since for such problems the algorithm, as a rule, 
quickly converges to one of the solutions. In addition, for 
some multidimensional problems with complex terrain of the 
objective function, fast convergence may turn into premature 
convergence to a quasi-optimal solution. This disadvantage 
can be partially compensated by the use of a suitable 
selection mechanism that would inhibit the too rapid 
convergence of the algorithm. The threshold value in the 
selection can be calculated in different ways. Therefore, in 
the literature on the genetic algorithm there are various 
variations of selection. The most famous of them are 
tournament and roulette (proportional) selections. In 
tournament selection, t individuals are randomly selected 
from a population containing N individuals, and the best of 
them are recorded in an intermediate array. This operation is 
repeated N times. Individuals in the resulting intermediate 
array are then used for crossing (also randomly). The size of 
the group of rows selected for a tournament is often equal to 
2. In this case, they speak of a binary tournament. In general, 
t is called the number of the tournament. The advantage of 
this method is that it does not require additional calculations. 
Recombination (reproduction). The recombination operator 
is applied immediately after the parent selection operator to 
obtain new progeny individuals. The meaning of 
recombination lies in the fact that the descendants created 
must inherit the gene information from both parents. 
Intermediate recombination is applicable only to real 
variables, but not to binary ones. In this method, the 

numerical range of the gene values of the descendants is 
preliminarily determined, which should contain the gene 
values of the parents. Descendants are created according to 
the following rule. 
 
Descendant = Parent 1 + α*(Parent 2 – Parent 1) 
 

As the proponents of this method note, the most optimal 
reproduction is obtained when d = 0.25. For each gene of the 
descendant being created, a separate factor α is selected. 

Mutation. After the reproduction process, mutations 
occur. This operator is necessary for “knocking out” a 
population from a local extremum and prevents premature 
convergence. This is achieved due to the fact that the 
randomly selected gene changes in the chromosome. 

The operators of the selection of individuals in the new 
population. To create a new population, you can use various 
methods of selecting individuals. 

Selection by repression. In this selection, the choice of a 
person in a new population depends not only on the size of 
its suitability, but also on whether there is already an 
individual in the population being formed with a similar 
chromosomal set. The selection is carried out from among 
the parents and their descendants. Of all the individuals with 
the same adaptability, preference is first given to individuals 
with different genotypes. Thus, two goals are achieved: first, 
the best-found solutions with different chromosome sets are 
not lost, and second, genetic diversity is constantly 
maintained in the population. Repression in this case forms a 
new population rather from distant individuals, instead of 
individuals grouped around the current found solution. This 
method is most suitable for multi-extremal problems, while 
in addition to defining global extremes, it is possible to 
single out those local extremes whose values are close to 
global ones [17]. 
 
 
5. Numerical calculations of the inverse problem 
 
To test the operation of the algorithms, we give the exact 
solution ka = 1.5, k12 = 1.0, k13 = 1.0, k21 = 0.15, k31 = 0.1, kel 
= 0.1, C0 = 5.0 according to which we define the value of the 
results of experiments  where 
M = 21, t = {0.0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7.0.8, 0.9, 1.0, 1.5, 
2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 9.0, 10.0}. With these 
values we will minimize the target functional. 

Numerical results of the genetic algorithm: 
 

 
Fig 2. Graph of functional  and number iteration n=8538 
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Fig 3. The norm of the difference between the exact value and the 
restored value . 

 

 

Fig 4. «Red»–■A precise solution, «Blue»–♦A solution by the method 
of GA 
 
Table 1. Restored parameters of the system: 
 A1 A2 A3 α β γ ka 

exact -9.85 0.01 0.25 2.22 0.12 5.4∙10-3 1.5 
GA 5.74 -6.31 0.31 1.32 2.63 5.08 1.3∙10-3 
 
 
4. Conclusions 
 
The numerical results of the inverse pharmacokinetic 
problem for the three-chamber model (figures 2-4, table 1) 
show that the concentration graph solved by the genetic 
algorithm coincides with the graph of exact data, and the 
coefficients are completely different, this leads to the fact 
that the solution is not the only one.  
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