ABSTRACT BOOK

INESS

The 7th International Conference on Nanomaterials and Advanced Energy Storage Systems
7-9 August, Almaty

www.iness.kz

Almaty, Kazakhstan
2019
ORGANIZING COMMITTEE

Position - Name
Chairman - Prof. Ilesanmi Adesida
Co-Chairman - Prof. Zhuambay Balkenov
Co-Chairman - Prof. Pham Hong-
Co-Chairman - Prof. Charles Surya
Member - Prof. Masatake Wakisaka
Member - Prof. Kiyoaki Kanamaru
Member - Prof. Hidehiro Sakurai
Member - Dr. Maksym Myronov
Member - Prof. Pajam Kaghazchi
Member - Prof. Youngguang Zhang
Member - Dr. Yinggu Xie
Member - Dr. Almagul Membayeva
Member - Dr. Indira Kurmanbayeva
Member - Dr. Aolya Mukanova
Member - Dr. Kuralay Kolshebayeva
Member - Mrs. Sandukgaly Kulybekuly
Member - Mr. Dauren Betybekuly
Member - Mr. Nurbol Togtanbek
Member - Mr. Nurlan Baikalov
Member - Mr. Orynbay Zhanadalov
Member - Mrs. Nazym Kassionova
Member - Mr. Assel Serikbayeva
Member - Mr. Al-Farabi Kolshekar
Member - Ms. Raikhan Zakarina
Member - Mr. Mirzak Nazakarayev
Member - Mr. Orynbassar Mukhan

Organization
Nazarbayev University, Kazakhstan
Institute of Batteries LLP, National Laboratory Astana,
Nazarbayev University, Kazakhstan
Al-Farabi Kazakh National University, Kazakhstan
Al-Farabi Kazakh National University, Kazakhstan
Nazarbayev University, Kazakhstan
Tokyo Metropolitan University, Japan
Tokyo Metropolitan University, Japan
University of Warwick, England
Hebrew University of Technology, Israel
Nazarbayev University, Kazakhstan
National Laboratory Astana, Kazakhstan

SCIENTIFIC ADVISORY COMMITTEE

1. Chairman – Prof. Sang-Soo Kim, Chungnam National University, Korea
2. Co-Chairman – Dr. Indira Kurmanbayeva, National Laboratory Astana, Kazakhstan
3. Prof. Woongjin Lee, Nazarbayev University, Kazakhstan
4. Prof. Desmond Aitkin, Nazarbayev University, Kazakhstan
5. Prof. Zulkhair Maasur, Al-Farabi Kazakh National University, Kazakhstan
6. Prof. Seong-Taek Myung, Sejong University, Korea
7. Prof. Jean-Pierre Perre-Pereira-Ramos, CNRS et Université Paris Est Créteil, France
8. Prof. Hiroaki Munakata, Tokyo Metropolitan University, Japan
9. Dr. Anton Gv, Nazarbayev University, Kazakhstan

SECRETARIAT OF INESS-2019

Conference Scientific Secretary – Dr. Berik Uzakbaula, NLA, Nazarbayev University, Kazakhstan
Technical Secretary – Dr. Anilin Nurpeissova, National Laboratory Astana, Kazakhstan

The 7th International Conference on Nanomaterials and Advanced Energy Storage Systems (INESS-2019)

PLENARY INVITED SPEAKERS

1. Masataka Wakisaka, Tatsuki Koseki, Shun Murayama, Taku Murata, Hiroto Shimamura
 Improvement of Oxidation Potential in Superconcentrated Electrolytes
 11
2. Ebrahim Yazami, Lithium Ion Batteries: Technology and Application
 12
3. Kiyoshi Kanamaru, All Solid State Battery Prepared by Composite Type Solid Electrolyte
 13
4. Jean-Pierre Perre-Pereira-Ramos, Rita Badde-Ludwig, Thanh Nguyen Le Huy, Nicolas Encry
 Promoting Na-pillar effect on the structural stability and cyclability of NaNiO2 as cathode material for Li-ion battery
 14
5. Song-Taek Myung, Passivation of Aluminum Current Collectors in Non-aqueous Carbonate Solutions Containing Sodium or Potassium Hexafluoro Phosphate Salts
 15
6. Maksym Myronov, Unlocking new devices applications with novel wafer scale Silicon Carbide heteroepitaxy
 16
7. Hidehiro Sakurai, Morphology Effect on Metal Nanoparticle/Organic Polymer Composite
 17
 18
9. Tomo Wakita, Shuzo Liu, Katosuke Okabe, Chokkalingam Annand, Yasuo Yonemura, Re
 Zhu, Hiroki Yamada, Akira Endo, Yutaka Yamada, Takeshi Yoshikawa, Koji Ohara, Tenya Okubo
 Continuous Flow Synthesis of ZSM-5 Zeolite on the Order of Seconds
 19
 20
11. Fu-Ming Wang, Investigation and characterization of in-situ polymer brush effects on Si anode material and its battery performance
 21
12. Daviy Kaps, Max Weeber, Kai Peter Birke, Digitalization in Battery Cell Manufacturing
 22
13. Barbara Letik, Lucie Leveau, Aurelien Gohier, Costel-Sorin Cojocaru, Jean-Pierre Pereira-Kamo
 Different ways for electrochemical performance improvement of silicon nanowires as anode for Lithium-ion batteries
 23
14. Liming Sun, Aiping Li, Liangbing Wang, Functional Peptide Self-assembled Nanomaterials for Biomedical Applications
 24
15. Liu, Yongqiang, Libing Zhang, Precise Engineering of Ultra-thin FeOxDecorated Pt-Based Nanoyozymes Atomic Layer Deposition to Switch off Undesired Activity
 25
16. Shuyi Wu, Yang Li, Liangbing Zhang, Dual-functional persistent luminescent composite for mesenchymal stem cells homing and gene therapy
 26
17. Liang-Yin Kuo, Payam Kaghazchi, Modeling of LiNi1/3Mn1/3Co1/3O2Cathode Materials
 27
18. Yingjie Xie, Adiel Duarte, Medina Khamid/Rajan Fan Carbon nanodots induced drug resistance and how to overcome it
 28
19. Nao-Li Wu, Synthesis and Operation of High-Sulfur-Content Cathodes for Li-Sulfur Batteries
 29
20. Thibaut Djenane, A new concept of microstructured electrodes for high performance stretchable microbatteries
 30
21. Stanislav Fedykov, Artem Akhmedov, Evgeny Antipov, Identifying OH-defects in LiFePO4 cathode materials for Li-ion batteries
 31
22. Xing-Jie Liang, Which Size of Nanoparticle is Beneficial to Pharmaceutical Development?
 32
23. Damar Astarakhanov, Zhitong Ren, Zhudong Ye, Balanana, Aleksandra B. Djuricic, Charles Surya,
 Anneig Strategies for High Performance Hysteresis-FreePolyvinil Solar Cells
 33
24. Jiang Chang, Regulation of stem cell fate using bioactive ions for tissue engineering
 34
25. Desmond Aitkin, Gudrun Kalimdina & Martin Jaeg, Battery Powered System Development for Solar-Powered UAVs
 35
26. Fabian Jeschull, Yuri Surace, Floro Scott, Sigita Treibinger - Silicon as Electrode and as Electrode's Capacity-Enhancing Additive

27. Haodong Jiang, Jieqing Fan, Jiushuang Zhang, Zhixin Sun - High-resolution coherate diffraction imaging with synchrotron radiation and XFELs

28. Jianli Jiang - Treatment of rheumatoid arthritis with FeO4@PDA magnetic targeting stem cells

29. Zhikui Manuyur - Development of nanoscience and nanotechnologies

30. Andrei Kurbatov, Feodor Makritka, Saule Kokhmetova, Alina Galeeva - The problem of the determination of kinetic parameters of the deintercalation-intercalation process

31. Ingoen Kim - Development of new cathode with high electrochemical performances for Na-ion batteries using first-principles calculation and structural analyses

32. Donghyuk Kim - Systems Approaches to Engineer Microorganisms to Produce Value-Added Materials

33. Sergei V. Letchenko - Global Effects of Doping on Surface and Interface Properties: An Ab Initio Study

ORAL PRESENTATIONS

34. A.K. Rakhimova, A.K. Galeeva, A.P. Kurbatov - Effects of absorbers on the synthesis of lithium iron phosphate for lithium-ion batteries

35. Saule Kokhmetova, Andrey Kurbatov, Alina Galeeva - Efficient way to create conductive coatings based on various carbon materials

36. Guzel Iismailova, Leonid Mikhailov, Svetlana Mikhailova, Rakibek Yersenbay, Nurlan Khusmetov, Oleg Lavrushin, Valery Nikolayev - Using solar energy by a smart window for the needs of urban residents

37. Daoren Batsbaatar, Barbara Lalk, Nicolas Emery, Zhunabay Bakkenov, Jean-Pierre Pereira, Ramos - Reduction Graphite Oxide for Polysulfide Trapping toward High-Performance Lithium/Sulfur Batteries

38. Olga Iusubova, Zhanbolat Mushakatyrk, Zhunabai Bakkenov, Konstantin Soukhinov, oil nanosized puckered V2O5y - polymer as cathode material for Li-ion batteries with enhanced electrochemical performances

39. Kandam Anandpoo - A Numerical Algorithm for the Analysis of the Thermal Stress-Stain State of a State District

41. Anastassia A. Makhtyshova, Aida R. Khecheva, Vadan V. Kravos, Tomirgi Kh. Khassan - Copper nanostructures loaded PET ion track membranes as a flexible composite material

42. Asghar Shafii-Pishvard, Madi Azizan, Sultana Iqbal, Kishukanur Urazov, Paulo Fernandez, Nurlan Tokmokov, Maria Correia - Comparison of antimy deposition selectivity thin films obtained by electrochemical deposition and sensitization of a metal precursors

43. Zhilbe Akhmedov, Baklyshim Aissilbek, Aziz Kudakhish - Numerical calculation of relative permeability for inhomogeneous fluids in the channel

44. Nazim Kassimova, Sandugash Kalbekkzyz, Memet Vazir Zhuraman, Zhunabai Bakkenov, Almagul Merzbyeva - Fabrication and characterization of polylpoly(vinyl alcohol)/maleic anhydride (PVAMMA) based polymer membranes for gel polymer electrolyte by electropinning for lithium-ion batteries

45. Nazgul Tompakova, Elena Dmitrieva, Igor Lebedev, Abai Serikkanov, Ekaterina Grushetskaya, Bagla Batirmetova - Influence of Acid Filming Solution on SnO2 Thin Films

46. Shapour Pashayev, Konstantin Mit Influence of Hydrogen Plasma on SnO2 Thin Films

47. Baklyshim Aissilbek, Abai Serikkanov, Abkalyzhan Salgatov, Abai Serikkanov - Numerical simulation of the behavior of the gel polymer electrolyte for lithium-ion batteries

49. Ashkyr Konakov, Zhunabai Bakkenov, Seung-Tae Myung - Activation of Oxygen Redox in P2-type Na2ZnIn2O4 compound by Incorporation of Zn into the Crystal Structure

52. Musd Alibe, Tulay Yildirir - Single channel potentialist for electroanalytical applications

POSTER SESSION

54. Berik Uzbekbay, Azat Abdullaev, Almogul Mentebeeva, Almogul Zhumabai, Zhunabai Bakkenov - Thermal conductivity of Sn thin films through time-domain thermoreflectance measurements

55. Yongong Zhang - Oxygen Efficiency of Oxygen-deficient La(0H), Nanorods Wrapped by Reduced Graphene Oxide for Polysulfide Trapping toward High-Performance Lithium/Sulfur Batteries

56. Ul兖iai Dziske, Ventsislav Mikhailov, Almogul Mentebeeva, Renata Nemekayeva, Nazim Gesiinov, Markizbrush - Research of the structure of a C<3 -P3> films by the Raman spectroscopy method

57. Maxim Maximov, Yury Kosliyat, Ilya Mitrofanov, Ilya Zhov, Aleksandr Rymantsev, Anatoly Popovich - Features of the synthesis of Lithium-based ternary oxide nanofilms by atomic layer deposition with LiHMs for thin film LIBs

58. Evgeniya Ilina, Efim Lyal, Boris Antonov - Modified solid-gel synthesis of the solid electrolytes based on LiLaZrO3: doped by Nb and Al

59. A.P. Ryzhkov, E. Bekmurt, R.R. Nemekayeva - Structure and properties of a C<3 -P3> <3-P3>

60. Nazgul Tompakova, Elena Dmitrieva, Igor Lebedev, Abai Serikkanov, Ekaterina Grusheskaya, Bagla Batirmetova - Influence of Acid Filming Solution on SnO2 Thin Films

61. Almagul Merzbyeva, Niyazbek Braye, Evgeniya Seliverstova Preparation and photovoltaic characteristics of nanocomposite based on reduced graphene oxide and TiO2

62. Elizina Alkhalidova, Dmitry Alamyan, Niyazbek Braye Nanocomposite materials based on PEDOT:PSS polymer mixture doped with Ag and TiO2 and Ag2O nanomaterials

63. Svetlana Pershina, Evgeniya Ilina, Konstantin Druzhin Reducing interfacial resistance between Li4La3Ge3(PO4)8 glass-ceramics and Li-metal anode by Al-coated Alibek Zhakypov, Suyumbka Maksimova, Oleg Prikholod, Guzal Iismailova, Kunydz Turmanova, Zhunabai Toleshin - Nanocycles Ge3Sb2Te5 films structure transformation influenced by laser irradiation

64. Indira Kurnaeva, S. Kalbekkzyz, A. Mentebeva, Z. Bakkenov SiOx anodes for LIB

65. Nurbol Tokmantsev, Berik Uzbekbaity, Abai Merzbeeva, Kyoshi Kanaizuma, Zhunabai Bakkenov NASICON-type electrolyte with transition metal dopants

66. Mentebeva, Zhunabai Bakkenov - Sulfor-containing composite cathode materials for Li-ion batteries obtained by vacuum infiltration method

67. Musd Alibe, Zhunabai Bakkenov - Sulfor-containing composite cathode materials for Li-ion batteries obtained by vacuum infiltration method

68. M. K. Kadir, B.E. Alpysbayeva, M. T. Yakub, M.S. Batula - Purposes structures for supercapacitors

69. Evgeniya Ilina, Efim Lyal, Boris Antonov - Modified solid-gel synthesis of the solid electrolytes based on LiLaZrO3: doped by Nb and Al

70. A.P. Ryzhkov, E. Bekmurt, R.R. Nemekayeva - Structure and properties of a C<3 -P3> <3-P3>

71. Evgeniya Ilina, Efim Lyal, Boris Antonov - Modified solid-gel synthesis of the solid electrolytes based on LiLaZrO3: doped by Nb and Al

72. A.P. Ryzhkov, E. Bekmurt, R.R. Nemekayeva - Structure and properties of a C<3 -P3> <3-P3>
Using solar energy by a smart window for the needs of urban residents

Gozal Ismailova1*, Leonid Mikhailov¹, Svetlana Mikhailova¹, Raimbek Yersiul¹, Nursultan Kenes¹, Oleg Lavrishëv¹, Valeriy Nikaïev¹
1IEPT, al-Farabi Kazakh National University, 71 al-Farabi ave, 050040 Almaty, Kazakhstan
**E-mail: gozal.a81@gmail.com

Development of a smart device containing solar panels, carrying out both energy and dust collection, decorative and productive gardening, regulation of light, heat and sound flow into the room is described. The aim of this development is to increase consumer attractiveness for individuals and profitability of the device using solar panels in urban conditions. Relevance of the study is also related to global sustainable development goals [1], namely: Goal 11 - aimed at improving the ecology of cities, Goal 7 - promoting the use of clean energy and Goal 13 - measures to combat climate change.

The device has a modular design principle to simplify installation and operation. The device consists of a main bearing module on which one can place 1-4 movable solar panels with a nominal power 125 W, a protective and dust-collecting dielectric plate, a block with vegetation, a washing and sprinkler unit and an automation unit that are connected to the overall electrical and mechanical circuit of the device powered by solar panels and the battery.

One of the features of the developing device is simple use and mounting on the building window, presence of a movable plate that protects the front surface of the solar panel from contamination and picks up dust. The solar panel with the plate obscures the light and noise flow into the room, creates a heated and illuminated greenhouse for plants on the windowsill, thereby prolonging the photosynthetic activity of plants for the winter period and increasing the amount of absorbed greenhouse gases. The device control system, essentially a smart-window, runs on the basis of Arduino (C++) using arbitrary logic (scripts) for various events in and out of the room.

Currently, a working model reduced at a scale of 1:5 of the developing device has been manufactured, and a full-size model of the device has been made on the window of the Faculty of Physics and Technology.

Acknowledgement: This research was supported by the grant AP05132897 of the Ministry of Education and Science of Kazakhstan Republic.

References:

Nanoporous pucked V₃O₅γ’-polymorph as cathode material for Li-ion batteries with enhanced electrochemical properties

Dauren Batyrbekuly1,2*, Barihan Laïk1, Nicolas Emsley1, Zhauraboy Bakkenov2, Jean-Pierre Pereira-Ramos3, Rita Baddour-Hadjjian1
1 Institut de Chimie et des Matériaux Paris Est, GESMAT, UMR 7182 CNRS-Université Paris Est Créteil, 2 rue Henri Dumas, 94320 Thiais, France
2 Institute of Batteries LLC, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
**E-mail: dauren.batyrbekuly@mu.edu.kz

The layered α-V₂O₅ compound with Van der Waals interlayer spacing is considered as a model for Li insertion reactions and has been extensively investigated as cathode material for Li batteries in various voltage ranges [1]. We gave recent evidence for the interest of the pucked layer γ’-V₂O₅, polymorph allowing reversible Li insertion at a higher potential (+0.2 V) compared to α-V₂O₅ [2]. In the present work, we have investigated the electrochemical behaviour of γ’-V₂O₅ in the high voltage window (4 V-2.5 V) corresponding to the exchange of 1 Li/mole of oxide (147 mAh g⁻¹). Cycling properties, rate capability and kinetic parameters for Li insertion in γ’-V₂O₅ are reported here for the first time in the 4.0 V-2.5 V potential range. Nanoporous oxide particles were prepared from a solution technique leading to a very fine powder with porous morphology (figure a). A stable capacity of 140 mAhg⁻¹ over 50 cycles at C/2 is obtained (figure b) while a remarkable value of 110 mAhg⁻¹ is still achieved at 10 C. All the data are discussed at the light of the structural mechanism recently evidenced for γ’-V₂O₅. A promoting nanosize effect is demonstrated on the electrochemical performance of γ’-V₂O₅.

(a) SEM image and (b) cycling properties (C/5 rate) of γ’-V₂O₅

Reference: