Sandybek Kunakov

Physics of Fissioning Plasma Energy Distributions of Fission Fragments First Edition

Al Farabi National University

- Monograph -

December 15, 2018

Springer

Preface

Here come the golden words

 $\begin{array}{l} place(s),\\ month\ year \end{array}$

 $First\ name\ Surname$ $First\ name\ Surname$

Contents

1	Elementary processes in fissiong plasma	1 1
	1.1.1 Subsection Heading	1
	Problems	2
2	Coupled Boltzmann Equations for Fissioning plasma for	
	Kinetics Description	3
	2.1 Section Heading	3
	2.1.1 Subsection Heading	3
	Problems	4
3	Monte Carlo application to Fissioning Plasma Properties	
	Description	5
	3.1 Section Heading	5
	3.1.1 Subsection Heading	5
	Problems	6
4	Hydrodynamical Equations in Fissioning Plasma	7
	4.1 Section Heading	7
	4.1.1 Subsection Heading	7
	Problems	8
5	Asymptotic theory of electrostatic probe in fissioning	
	plasma	9
	5.1 Section Heading	9
	5.1.1 Subsection Heading	9
	Problems	10
6	Absolute Measurents in Fissioning Plasma	11
	6.1 Section Heading	11
	6.1.1 Subsection Heading	11

X	Contents
	Problems
7	Thermodynamics and Statistical Physics of Fissioning
	Plasma
	7.1 Section Heading
	7.1.1 Subsection Heading
	Problems
Sol	lutions
\mathbf{Re}	ferences
Inc	lex

Elementary processes in fissiong plasma

Your text goes here. Separate text sections with the standard IATEX sectioning commands.

1.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

1.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{1.1}$$

Subsubsection Heading

Your text goes here. Use the L^AT_EX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 1.1. Please write your table caption here

first	second	third
number	number	number
number	number	${\rm number}$

2 1 Elementary processes in fissiong plasma

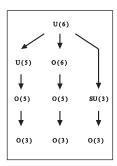


Fig. 1.1. Please write your figure caption here

Theorem 1.1. Theorem text goes here.

Lemma 1.2. Lemma text goes here.

Problems

 ${\bf 1.1.}$ The problem is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Coupled Boltzmann Equations for Fissioning plasma for Kinetics Description

Your text goes here. Separate text sections with the standard IATEX sectioning commands.

2.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

2.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{2.1}$$

Subsubsection Heading

Your text goes here. Use the LATEX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 2.1. Please write your table caption here

first	second	third
		number number

4 2 Coupled Boltzmann Equations for Fissioning plasma for Kinetics Description

$$\partial_{\mu} f_{j} = S_{j}(n \to FC \to ff_{j}) + S_{j}^{ion}(ff_{j}(\varepsilon') \to FC \to e + FC^{+} + ff_{j}(\varepsilon'_{ff} - I - \varepsilon_{e})) - L_{ff}^{ion}(ff_{j} \to FC \to e + FC^{+} + ff_{j}(\varepsilon_{ff} - I - \varepsilon_{e})) + L_{ff}^{ion}(ff_{j} \to FC \to e + FC^{+} + ff_{j}(\varepsilon_{ff} - I - \varepsilon_{e})) + L_{ff}^{ion}(ff_{j}(\varepsilon') \to FC \to FC + ff_{j}(\varepsilon''_{ff} - \Delta \varepsilon^{el}) - L_{ff}^{el}(ff_{j} \to FC \to FC + ff_{j}(\varepsilon_{ff} - \Delta \varepsilon^{el})) + L_{f}^{exc}(ff_{j}(\varepsilon') \to FC \to FC^{exc} + ff_{j}(\varepsilon''_{ff} - \Delta \varepsilon^{exc})) - L_{ff}^{exc}(ff_{j} \to FC \to FC^{exc} + ff_{j}(\varepsilon_{ff} - \Delta \varepsilon^{exc})) - L_{ff}^{ec}(ff^{+N}_{j} + Ne \to ff)$$

$$(1)$$

$$f_{pe}(t, x_i v_i) = \sum_{k}^{N} \int_{I}^{E_j^0} f_{j}^k(t, x_i, v_i) \Omega_{j,k}^{ion}(v_j, \triangle E_j^k) d(\triangle E_j^k)$$
 (10)

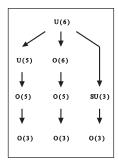


Fig. 2.1. Please write your figure caption here

Theorem 2.1. Theorem text goes here.

Lemma 2.2. Lemma text goes here.

Problems

2.1. The problem¹ is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Monte Carlo application to Fissioning Plasma Properties Description

Your text goes here. Separate text sections with the standard IATEX sectioning commands.

3.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

3.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{10}$$

Subsubsection Heading

Your text goes here. Use the LATEX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 3.1. Please write your table caption here

first	second	third
number	number	number
number	number	${\rm number}$

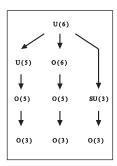


Fig. 3.1. Please write your figure caption here

Theorem 3.1. Theorem text goes here.

Lemma 3.2. Lemma text goes here.

Problems

 $\bf 3.1.$ The problem is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Hydrodynamical Equations in Fissioning Plasma

Your text goes here. Separate text sections with the standard LaTeX sectioning commands.

4.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

4.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{10}$$

Subsubsection Heading

Your text goes here. Use the LATEX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 4.1. Please write your table caption here

first	second	third
		number number

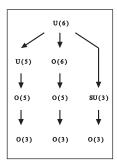


Fig. 4.1. Please write your figure caption here

Theorem 4.1. Theorem text goes here.

Lemma 4.2. Lemma text goes here.

Problems

4.1. The problem is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Asymptotic theory of electrostatic probe in fissioning plasma

Your text goes here. Separate text sections with the standard IATEX sectioning commands.

5.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

5.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{10}$$

Subsubsection Heading

Your text goes here. Use the L^AT_EX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 5.1. Please write your table caption here

first	second	third
		number number

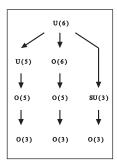


Fig. 5.1. Please write your figure caption here

Theorem 5.1. Theorem text goes here.

Lemma 5.2. Lemma text goes here.

Problems

 ${\bf 5.1.}$ The problem is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Absolute Measurents in Fissioning Plasma

Your text goes here. Separate text sections with the standard IATEX sectioning commands.

6.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

6.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{10}$$

Subsubsection Heading

Your text goes here. Use the LATEX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 6.1. Please write your table caption here

first	second	third
		number number

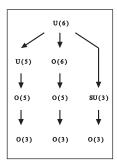


Fig. 6.1. Please write your figure caption here

Theorem 6.1. Theorem text goes here.

Lemma 6.2. Lemma text goes here.

Problems

 ${\bf 6.1.}$ The problem is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Thermodynamics and Statistical Physics of Fissioning Plasma

Your text goes here. Separate text sections with the standard IATEX sectioning commands.

7.1 Section Heading

Your text goes here. Use the LATEX automatism for your citations [1].

7.1.1 Subsection Heading

Your text goes here.

$$\mathbf{a} \times \mathbf{b} = \mathbf{c} \tag{10}$$

Subsubsection Heading

Your text goes here. Use the L^AT_EX automatism for cross-references as well as for your citations, see Sect. 7.1.

Paragraph Heading

Your text goes here.

Table 7.1. Please write your table caption here

first	second	third
number	number	number
number	number	${\rm number}$



Fig. 7.1. Please write your figure caption here

Theorem 7.1. Theorem text goes here.

Lemma 7.2. Lemma text goes here.

Problems

7.1. The problem is described here. The problem is described here. The problem is described here.

- (a) The first part of the problem is described here.
- (b) The second part of the problem is described here.

¹ Footnote

Solutions

Problems of Chapter ??

7.1 The solution is revealed here.

- (a) The solution of first part is revealed here.
- (b) The solution of second part is revealed here.

References

- 1. Kajan E (2002) Information technology encyclopedia and acronyms. Springer, Berlin Heidelberg New York
- 2. Broy M (2002) Software engineering From auxiliary to key technologies. In: Broy M, Denert E (eds) Software Pioneers. Springer, Berlin Heidelberg New York
- 3. Che M, Grellmann W, Seidler S (1997) Appl Polym Sci
 $64:1079{-}1090$
- 4. Ross DW (1977) Lysosomes and storage diseases. MA Thesis, Columbia University, New York

\mathbf{Index}

 $paragraph \quad 1, 3, 5, 7, 9, 11, 13$