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ibstract. This article deals with the problems of numerical study of the
wamechanical state of rods. On the basis of the Jundamental law on the change in the

Swownt of heat, an equation of the established thermal conductivity for a horizontal rod o
weted length and a constant cross section is constructed through a fixed cross-section in
we & In this case, different temperatures are set at the two ends of the investigated

- Wi heat exchange with the surrounding medium takes place through the lateral
wiace In addition, the investigated rod is made of thermal protective material ANV-300).
"he determining law of the distribution of temperature, of all the corresponding
Semations and stresses, and also of the displacement along the length of the investigated

Wi The values of the thermal elongation and the resulting axial force are calculated.

" @ complex thermal zone, bearing components of reactive and hydrogen engines,
muciear and thermal power stations, processing lines of processing industries, as well as
Weermal combustion engines operate. The reliable operation of these structures will
Sepemd om the conditions of the thermoelectric power of the bearing components.
YRerefore, this study is devoted to a numerical study of the state of the thermoelectric
ST A ihe structural components in the form of rods of limited length, bounded at both
b Py

" proposed computational algorithm is based on the principle of energy

wseration. In this case, all types of integrals in the Junctional energy formulas are
Weegrased analytically. In this case, the numerical solutions obtained will have high
ST O

Keywords: the temperature, the rod. the thermal energy, the algorithm.

Statement of the problem

¢ consider a horizontal rod of limited length and a constant crossed section whose
m=a Flem?). He axis ox of the rod is directed from the left to the right which coincides
S S5 s of the rod. At the left end of the rod. the temperatureT; [c"], is given, and the
Spectwon T5[c”). Inthis case T; > T, Through the lateral surface of the rod, heat exchange
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Cexunsa 1. Corpemennbie npoGieMbl NPUKNAAHON MATEMATUKH,
WHQOPMATHKK U TEOPUH YIIPABJIEH WS

takes place with its surrounding medium. In this case, the heat transfer
: t . :

coefficient h [;‘%2—0] and the ambient temperature T, [c?]. The calculation scheme of the

process is shown in Fig. 1

h T
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Picture 1. The calculation scheme of the problem

It is required to determine:

1) The law of temperature distribution along the length of the investigated rod.

2) Determine the amount of thermal elongation of the test rod.

In case of pinching the two ends of the rod, it is necessary to determine:

3) The arising axial forces.

4) The field of distribution of the components of deformations and stresses.

5) The field of distribution of displacement.

The physical and mechanical properties of the material of the rod under investigation

g i Comr t
are characterized by the coefficients of thermal conductivity K, [-C:ITEO], thermal

. : K ; : ;
expansion a Lio] and elastic modulus E [;T%] If we take into account that the investigated

process of the rod material is much larger than the cross-sectional area, then it is possible
to neglect the temperature gradients in the directions perpendicular to the axis of the rod
without significant error, and take the temperature constant at each point of the cross
section perpendicular to the axis. With this assumption, a temperature with a function of
only one independent variable x, and the field of temperature distribution along the length
of the rod can be described by an ordinary differential equation.

According to the fundamental law of thermophysics, the amount of heat passing
through the time dt through the cross sections of the rod at a distance of x [cm] from its
left end will be

dT
_KxxF a drt ( 1 )
where T'(x) — is the temperature distribution field, which is still unknown.

At that time, the amount of heat passing through the time dt through the cross
section, located at a distance x + dx[cm] from the lefi end of the rod. will be equal to

o0
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2
o' S (z—z+ %dx) dt 2
‘0 addition, the portion of the rod enclosed between the sections spaced from the lefi
S of the rod at a distance of x and x + dx[cm], due to the thermal conductivity process
soguwes during the time dt the amount of heat equal to the difference of the indicated
geamtaes (1) and (2) €.
'n addition, the portion of the rod enclosed between the sections spaced from the lefi

@i of the rod at a distance of x and x + dx[cm], following the heat conduction process.
soguwres m the ime dt the amount of heat equal to the difference of the indicated amounts
ar .

Kxde_xz dt o

' should also be noted that during this same time, a heat loss equal to

hPdx(T — T,.)dt -
where Plom] is the cross sectional.
But since the process we are investigating is steady-state, i.e. stationary, then from
3-4) we have

wh

2
KyxF 5= dxdr = hPdx(T — T,.)du (

From this, for the problem under consideration, we determine the equation for the
sieady-state heat conductivity

AT hP(T-Ty)
dx? KyyF

(6)

For convenience, we introduce the notation

hpP "
. ;
KyxF

comsadering that the ambient temperature T, = const,0 < x < [, then we have

d(T-Too) _ dt
dx  dx

ence we also obtain

da’r  di(T-T.)
_—= = a0 =l
dx? dx? 0=sx=l ®)



Cexuusa 1. CoBpeMeHHbIe Npo6aeMbl NPHKIQJAHOH MaTEMATHKH,
HHPOPMATHKH U TEOPHUH yNpaBAeHHs

Taking (7) and (9) into account, we rewrite (6)

dA(r=~Tp)
dx?

a?(T=T,) =0 (10)

This equation is an ordinary differential equation with constant coefficients. Then its
general integral will be

T~ =08 4™ ex<] (11)

where C; and C, are constants of integration. Their values are determined from the
boundary conditions at the ends of the rod.

Mx==E"Tre= =T (12)
Iy — T =G + 6
1 a11 : —al} (13)
T2 - TOC = Cle + Cze
From these systems, the values C; and C,.
C o= (TZ i oc) = — Tac)e_al
=
ZShz(al) (14)
0, = (Tl i Toc)ea - (TZ i Tnc)
5 2sh(al)

Substituting (14) into (11), we determine the field of temperature distribution along
the length of the rod under consideration, taking into account the operating conditions [2]

T(x, h, Ky, P,F,T,o) = Ty + “"2-T“)S“(“"2;((:;)'““”“““"‘) 0<x<l (15)

On the basis of the fundamental theory of thermal physics, it is possible to determine
the elongation of the rod under consideration if it is pinched by one end and the other is
free

') !
Al = [oT(x)dx=a [T(0)dx=alT, 1 +[(T, - T, Nehlal)-1)/a~ (T, -, )1 - ch(al)/ @)}/ sh(al)} (16)

In the event that both ends of the rod are clamped, an axial compressive force R is
produced in it, which will be directed along its axis ox. Its value is determined by the
corresponding Hooke law [3]

_ALEF __ aEF
!

R= {1 1+[(1. =T, )(ch(al)=1) 1 a~ (- T, )1~ ch(al)/ a) ]/ shial)| (17)
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In this case, according to the length of the investigated rod, the distribution law of
the thermoclastic component of the voltage t can be determined according to the
generalized Hooke's law

F [

(e]8

i i TI+|(L =T Wch(al)-1)/a—(T —=T Y1-ch(al)/ a) / sh(al)! (18)
2 oc 1 oc |

Then the distribution law of the corresponding thermo-elastic component of the
deformation is also determined according to Hooke's law

(e)

” i
o= :_T{Tm,ur[(r3 T )(ch(al)=1)/a~(T,~T,)(1~ch(al)/ a) ]/ sh(aD)| (19)

Further, according to the theory of thermal physics, the law of distribution of the
temperature component of deformation

by =L

x)+ (T, - T, )sha(l - >
Ef(.\’):_aT(x)z—a{Iz,LA'(' w Mgl ()~ S, Johotl) o)

sh(al)

},Os_rsf (20)

Then the temperature component of the voltage is already determined according to
Hooke's law

(7, - T, )sh(ax) + (T, ~ T, )sha(l - x)
sh(al)

O'T(x)=E£T(x)=—aE{T;(_+ },OSA‘SJ (21)

After this, according to the theory of thermo elasticity, it is possible to determine the
@w of distribution of the elastic component of deformation

e(x)=¢ _gr(x):_%{jjﬂu[(rz—a M(ch(al)=1)/ a—(T, =T, )1~ ch(al)/ a) |/ shial)| +

(22)
el . (T, T, )sh(ax)+ (T, - T, )sha(l — x)
j sh(al)

},Osxsl

Then. according to Hooke's law, we can determine the law of distribution of the
clastic component of the voltage

_~m:E&;(.n=a-o,(_\-)=,-5!5{rn/+[(r3—TM J(ch(al)=1)/a~(T, - T, )1 ~ch(al)/a) |/ shial)| = (23

aBlT + (5 =T, )sh(ax) + (T, - T, )“'had_X)}-O <x<l

shial)

11



Cekuus 1. CoBpeMeHHble Npo6ieMbl NPHKIAAHOH MATEMATHKH,
MHPOPMATHKH H TEOPHH YN PaBAEHUsA

Finally, we can determine the law of distribution of the displacement of the cross-
section of the rod. It is determined from the Cauchy relations

8‘(.\’)=%l:> U:J‘E‘(.\')d\'+C (24)
Ay

Here the value of the constant C is determined from the pinning conditions
Ux=0)=0. Then we have

chal-1

alshal

U(x)= [+ (F +T, =2F, ):|\’+GY{T X+ [[(T T Ychax—(T, - )]}
asha (25)

(1, =T, )chal—(T, - T)]

CJ‘: ha

Then we have /=100cMm, K., =
E=2-10%2%: T)=600°C; T>=100°C; r=Icm.

Then we get the results shown in Figure-2. In Figure-2, a) the law of the distribution
of temperature along the length of the rod is given. The resulting law of distribution of
deformation components is given in Figure-2, b). It can be seen from the figure that the

thermo-elastic component of the deformation €-is constant along the entire length of the
rod.

a1
T = 200 a:125-107c—0;

At that time, the elastic component of the deformation &(x), on stretches near the
jamming, has a stretching character. In the middle section of the rod, &(x), has a
compressive character. The temperature component of the deformation &7(x) along the
entire length has a compressive character. Its maximum value corresponds to the highest
temperature.

The nature of the component stresses is similar to the corresponding deformations.
This is clearly seen from Figure-2, c¢). In Figure-2, d) the distribution field for the
displacement of the cross-sections of the rod is given. It can be seen from the figure that

the cross-sections of the rod in section 0 < x < 6,9 are moving in the direction of the x

axis. At that time, the largest displacement Umax1 = 0.0043092 cm corresponds to the
coordinate cross-section of which x = 8 ¢cm;

The cross sections of the rod located in the section 70 <x <l = 100 cm move against
the direction of the axis ox. Here, the largest displacement Upux2=-0,0016472 cm
corresponds to a cross section whose coordinate is x = 94 cm. Moreover, [Upayril/]
Umax21=2,61639;
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Cexums 1. CoBpementble Npo6ieMbl TPUKAAAHON MAaTeMaTHKH,

MHOOPMATHKH M TEOPHH yNpaBAeHHs
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Figure - 2. The laws of distribution of temperatures, strains, stresses and displacements

CONCLUSION

On the basis of the fundamental laws of changing the amount of heat, a resolving
differential equation of the second order with constant coefficients is constructed which
describes the steady-state temperature distribution in a rod of limited length and constant
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cross section in the presence of lateral heat exchange and point heat sources in the form
temperature at the ends of the rod. The field of temperature distribution, the magnitude
the elongation of the rod, the magnitude of the resulting axial force, the laws of distribut

f all the components of the strain and stress, the distribution field of the elastic componen:
of the displacement are determined.
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REDUCTION OF MODERN PROBLEMS OF MATHEMATICS TO
THE CLASSICAL RIEMANN-POINCARE-HILBERT PROBLEM

Durmagambetov A.A.

aset.durmagambeti@email.com

Abstract. Using the example of such a complicated problem as the Cauchy problem
for the Navier-Stokes equation, we show how the Poincaré-Riemann-Hilbert boundary
value problem enables us to construct effective estimates of solutions for this case. The
apparatus of the three-dimensional inverse problem of quantum scattering theory is
developing for this. In which it is shown that the unitary scattering operator can be studied
as a solution of the Poincaré-Riemann-Hilbert boundary-value problem. This allows us to
go on to study the potential in the Schrddinger equation, which we consider as a velocity
component in the Navier-Stokes equation. The same scheme of reduction of Riemann
integral equations for the zeta-function to the Poincaré-Riemann-Hilbert boundary-value
problem allows us to construct effective estimates that describe the behavior of the zeros
of the zeta function very well.
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