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Abstract: In this work semi-supervised learning was considered. To solve the problem of semi-supervised 

learning CASVM and CANN algorithms were developed. The algorithms are based on combination of 

collective cluster analysis and kernel methods. Probabilistic model of classification with use of cluster 

ensemble was proposed. Within the model, error probability of CANN was studied. Assumptions that make 

probability of error converge to zero were formulated. The proposed algorithms were experimentally tested 

on a hyper spectral image. It was shown that CASVM is more noise resistant than standard SVM. 

Keywords: Recognition, Classification, Hyper spectral image, Semi-supervised learning. 

1. INTRODUCTION 

At present, a sufficiently large number of algorithms for cluster analysis have been developed (Berikov 2013, 

Amirgaliev & Mukhamedgaliev 1985, Aidarkhanov et al. 2001) . The problem of cluster analysis can be 

formulated as follows. There are many objects described by a set of some variables (or a distance matrix). 

These objects are to be broken down into a relatively small number of clusters (groups, classes) so that the 

grouping criterion would take its "best" value. The number of clusters can be either selected in advance or not 

specified at all (in the latter case, the optimal number of clusters must be determined automatically). A quality 

criterion usually means a certain function, depending on the scatter of objects within the group and the 

distances between groups (Berikov 2013, Amirgaliev & Mukhamedgaliev 1985) . 

Recently cluster analysis has been actively developing an approach based on collective decision-making. It 

is known that algorithms of cluster analysis are not universal: each algorithm has its own specific area of 

application: for example, some algorithms can better cope with problems in which objects of each cluster are 

described by "spherical" regions of multidimensional space; other algorithms are designed to search for "tape" 

clusters, etc. In the case when the data are of a heterogeneous nature, it is advisable to use not one algorithm 

but a set of different algorithms to allocate clusters. The collective (ensemble) approach also makes it possible 

to reduce the dependence of grouping results on the choice of parameters of the algorithm, to obtain more 

stable solutions in the conditions of "noisy" data, if there are "omissions" in them (Berikov, 2013, Amirgaliev 

& Mukhamedgaliev 1985, Aidarkhanov et al. 2001) . 

In classification problems, group methods are widely used. They consist in the synthesis of results obtained 

by applying different algorithms to a given source information, or in selection of optimal, in some sense, 

algorithms from a given set. There are various ways of defining group classifications. The formation of 

recognition as an independent scientific theory is characterized by the following stages: 

 The appearance of a large number of various incorrect (heuristic) methods and algorithms to solve 

practical problems, oftentimes applied without any serious justification. 

 The construction and research of collective (group) methods, providing a solution to the problem of 

recognition based on the results. 

 processing of initial information by separate algorithms (Joydeep & Ayan, 2011) . 

Ensemble approach allows improving the quality of clustering. There are several main directions in the 

methods of constructing ensemble solutions of cluster analysis: based on the consensus distribution, on the co-

associative matrices, on the models of the mixture of distributions, graph methods, and so on. as well as the 

main methods for obtaining collective cluster solutions: the use of a pairwise similarity/difference matrix; 
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maximization of the degree of consistency of decisions (normalized mutual information, corrected Rand index, 

etc.) Each cluster analysis algorithm has some input parameters, for example, the number of clusters, the 

boundary distance, etc. In some cases, it is not known what parameters of the algorithm work best. It is 

advisable to apply the algorithm with several different parameters rather than one specific parameter. 

1.1. Ensemble cluster analysis  

The group ensemble consists of different partitions. Such partitions can be obtained from several applications 

of any one algorithm with different parameters, or from applying different algorithms to one data set. The 

proposals of cluster ensembles solve the problems inherent in clustering: they can provide more reliable and 

stable solutions using consensus on several clustering results. The orthogonal problem associated with 

clustering is a large dimension. Large data is a complex task for the clustering process. Different algorithms 

of clustering can process data of low dimensionality, but as data dimension increases, these algorithms tend to 

collapse. In large-size spaces, it is very likely that for any given pair of points within one cluster, there are at 

least several dimensions at which the points are far apart. As a consequence, distance functions that are using 

equally all input functions can be inefficient. The technique of a group ensemble is characterized by two 

components: a mechanism for creating a variety of sections, as well as a consensus function for combining the 

input of partitions into finite clustering. A variety of partitions are usually generated using different clustering 

algorithms, or by applying a single algorithm with different parameters, possibly in combination with a 

selection of data or functions. One popular methodology for constructing a consensus function uses a co-

associated matrix. Such a matrix can be considered as a similarity matrix, so it can be used with any clustering 

algorithm that works directly on similarities. 

Let set S = {x1, x2, ..., xn} has n points. An ensemble is a collection of m clustering solutions: G = {G1, G2, 

..., Gm}. Each solution GL for L = 1, ..., m, is a partitioning of set  S, that is,  GL = {𝐺𝐿
1, 𝐺𝐿

2 , …, 𝐺𝐿
𝐾𝑙},  where 

∪𝐾 𝐺𝐿
𝐾=S. Given the set of cluster solutions C and the desired number of clusters k, the goal is to combine 

different solution clusters and calculate a new partition of S into k disjoint clusters. The task of cluster 

ensembles is to develop an appropriate consensus function that integrates cluster component solutions into 

"improved" final clustering. 

In this work semi-supervised learning is considered. In semi-supervised learning the classes are known only 

for a subset of objects in the sample. The problem of semi-supervised learning is important for the following 

reasons: 

 unlabeled data is cheap 

 labeled data may be difficult to obtain 

 using unlabeled data along with some labeled data may increase the quality of learning 

There are many algorithms and approaches to solve the problem of semi-supervised learning (Joydeep & 

Ayan, 2011) . The goal of the work is to devise and test a novel approach to semi-supervised learning. The 

novelty lies in the combination of algorithms of collective cluster analysis (Domeniconi & Al-Razgan 2009, 

Berikov 2014) and kernel methods (support vector machines SVM (Berikov & Pestunov, 2017) and nearest 

neighbor NN), as well as in theoretical analysis of the error of the proposed method. In the coming sections a 

more formal problem statement will be given, some cluster analysis and kernel methods will be reviewed, the 

proposed methods will be described and its theoretical and experimental ground will be provided. 

Cluster ensembles combine multiple clusters of a set of objects into one consolidated clustering, often called 

a consensus solution. 

2. FORMAL PROBLEM STATEMENT OF SEMI-SUPERVISED LEARNING 

Suppose we have a set of objects X to classify and finite set of class labelsY . Features describe all the objects. 

By a feature of an object we mean the following mapping
ff X D  , where 

fD  — set of values of a 

feature. 

Depending on 
fD  features can be of the following types: Binary features: Df  ={0,1}; Numerical features: 

fD R ; Nominal features: 
fD  — finite set; Ordered features: 

fD  — finite ordered set. 

For a given feature vector 1 mf f , vector 1( ( ) ( ))mx f f    is called feature descriptor of object

X . Further, in the text we do not distinguish between an object and its feature descriptor. In the problem 

of semi-supervised learning at the input we have a sample NX  = { 1 Nx x } of objects from X .  

There are two types of objects in the sample:  



 
1{ }c kX x x   - labeled objects with the classes they belong to: 

1{c kY y y  }  

 
1{u k NX x x  } - unlabeled objects 

Conduct so-called inductive learning — build a classification algorithm a X Y  , which minimizes 

probability of error and match objects to their uX , and new objects to testX , which were unavailable at the time 

of building of the algorithm. 

The second is so-called transductive learning.  Here we get labels only for objects from  uX  with 

minimal error. In this work, we consider the second variant of problem statement. 

The following example shows how semi-supervised learning differs from a supervised learning. 

Example: Label objects are given at the input 1{ }c kX x x   with their respective classes 1{ },c kY y y   

where {0 1} 1iy i k     . The objects have two features and their distribution is shown in Figure 1 a). 

Unlabeled data is also given 1{ }u k NX x x   as shown in Figure 1b).  

   

Figure 1: a) Features of objects; b) Labeled objects Xc with unlabeled objects Xu 

  

Suppose that a sample from a mixture of normal distributions is given. Let's estimate the density of the 

classes throughout the data set at only on the labeled data, after which we construct the separating curves. 

Then, from Figure 2 it can be seen that the quality of the classification using the full set of data is higher. 

 

Figure 2: Obtained class densities: а) by labeled data; b) by unlabeled data 

 

3. COLLECTIVE SOLUTIONS IN CLUSTER ANALYSIS 

3.1. On the reasons for the development of the collective approach 

The task of cluster analysis is to split the sample into disjoint subsets, called clusters, so that each cluster 

represents a group of similar objects, and objects in different clusters differ significantly. The solution of the 

clustering problem may be ambiguous for several reasons: 



 There is no best criterion for the quality of clustering. A large number of reasonable heuristic criteria and 

algorithms are known that do not have an explicitly defined criterion, but quite a decent clustering; 
 The number of clusters is very often unknown in advance and is set either manually or during the operation 

of the algorithm; 
 The results of clustering depend very much on the metric, which is chosen by the expert and the specifics 

of the application domain. 

3.2. The matrix of average differences 

To construct a matrix of average differences, clustering of all available objects 1 NX {x x }    is done by 

an ensemble of several different algorithms 1 M  . Each algorithm gives mL  variants of partition, 

1m M  . Based on the results of the algorithms, a matrix H  of average differences is built for objects of 

X . The matrix elements are equal to:   

1 1

1
( ) ( )

mLM

m lm

m lm

h i j h i j
L


 

      (1) 

where 1i j { N}    - objects' numbers ( ) 0mi j     - initial weights so that 
1

1 ( ) 0
M

m lm

m

h i j


    , if 

pair ( )i j  belong to different clusters in l -th variant of partition, given by algorithms m  and 1 , if it 

belongs to the same cluster.  

Weights m  may be same or, for example, may be set with respect to quality of each clustering algorithm. 

The selection of optimal weights is researched in Domeniconi & Al-Razgan (2009) .  

4. KERNEL METHODS OF CLASSIFICATION  

To solve the classification problem, kernel methods are widely used, based on the so-called "kernel trick". To 

demonstrate the essence of this "trick", consider the support vector machine method (SVM) - the most popular 

kernel method of classification. SVM is a binary classifier, although there are ways to refine it for 

multiclassification. 

4.1. Binary classification with SVM 

In the problem of dividing into two classes (the problem of binary classification), a training sample of objects 

1{ }nX x x   is at the input with classes 1{ }nY y y  , { 1 1}iy     , for  1i n  , where object are 

points in m -dimensional space of feature descriptors. We are to divide the points by hyperplane of dimension 

( 1m ). In the case of linear class separability, there exist an infinite number of separating hyperplanes. It is 

reasonable to choose a hyperplane, the distance from which to both classes is maximized. An optimal 

separating hyperplane is a hyperplane that maximizes the width of the dividing strip between classes. The 

problem of the support vector machine method consists in constructing an optimal separating hyperplane. The 

points lying on the edge of the dividing strip are called support vectors. 

A hyperplane can be represented as 0w x b   , where   — scalar product, w  — vector 

perpendicular to separating hyperplane, and b  — an auxiliary parameter. Support vector method builds 

decision function in in the form of 

1

( ) ( )
n

i i i

i

F x sign c x x b


  
 

It is important to note that the summation goes only along support vectors for which 0i  . Objects 

x X  with ( ) 1F x   will be assigned one class, and objects with ( ) 0F x   another.  

With linear inseparability of classes, one can perform a transformation X G    of object space X  to 

a new space G  of a higher dimension. The new space is called is called "rectifying", because the objects in 

the space can already be linearly separable. 



Decision function ( )F x  depends on scalar products of objects, rather that the objects themselves. That is 

why scalar products x x  can be substituted by products of  ( ) ( )x x    kind in the space G . In this 

case the decision function ( )F x  will look like this:  

1

( ) ( ( ) ( ) )
n

i i i

i

F x sign c x x b  


  
 

Function ( ) ( ) ( )K x x x x      is called kernel. The transition from scalar products to arbitrary kernels 

the "kernel trick". Selection of the kernel determines the rectifying space and allows to use linear algorithms 

(like SVM) to linearly non-separable data. 

5. PROPOSED METHOD 

The idea of the method is to construct a similarity matrix (1) of all objects from the input sample X . The 

matrix will be compiled by applying different clustering algorithms to X . The more a pair of objects are 

classified as belonging to one class the more similar they will be. Two possible variants of prediction for 

unlabeled classes  uX   will be proposed using similarity matrix. Further the idea of the algorithms will be 

described in detail. The following theorem holds: 

Theorem 1.  Let 1 M   — be algorithms of clustering analysis , each algorithm gives  mL  variants 

of partition, 1m M  , ( ) 0lmh x x  , if a pair of objects ( )x x  belongs to different clusters in l -th 

variant of partition, given by algorithm m  and 1, if it belongs to the same cluster. 0m   - initial weights 

such that 
1

1
M

m

m




 .  Then function 1

1 1

( ) ( )
m

m

LM

m lmL

m l

H x x h x x
 

      satisfies the condition of Mercer 

theorem. 

Proof. It is obvious that function ( )H x x  symmetric. Let 
lm

rC  - be the set of indices of objects that 

belong to r -th cluster, given by m -th algorithmin l -th variant of partition. Let's show that ( )H x x  

nonnegatively defined. 

Let take arbitrary 
pz R  and show that 0Tz Hz    

1 1

1 1

1 1 1 1 1 1

2 21 1
1

1 1 1

( ) ( )

( ) (( ) ( ) ) 0.

m m

m m

m m

m m
lm lm lm lm

K Klm lm

L Lp pM M
T

m lm i j m lm i jL L

i j m l m l i j

L LM
M

m m i j i j m i iL L

l m li j C i j C iınC i C

z Hz h i j z z h i j z z

s z z z z z z

 

 

       



      

    

     

   

       
 

Thus, function ( )H x x  can be used as a kernel in kernel methods of classification. For instance, in 

support vector machines (SVM) and in nearest neighbor method (NN). Further, the two variants of the 

algorithm that implement the proposed method are described: 

Algorithm CASVM 

Input: objects cX  with their classes cY  and objects uX , number of clustering algorithms M , number 

of clustering mL  by each algorithm 1m m M    . 

Output:  classes of objects uX .  

1. Cluster objects c uX X  by algorithms 1 M  , and get mL  variants of partitions from each 

algorithm 1m m M    .  

2. Computer matrix H  for c uX X by formula (1).  

3. Train SVM with labeled data cX , using matrix H  as kernel.  

4. By means of SVM predict classes of unlabeled data uX .   

End of algorithm 



Algorithm CANN 

Input: objects cX  with given classes cY  and objects uX , number of clustering algorithms M , number 

for clusters mL  by each algorithm 1m m M    .  

Output: classes of objects uX .  

1. Cluster objects c uX X  by algorithms 1 M  , get mL  variants of partitions from each algorithm

1m m M    .  

2. Compute H  for c uX X  by formula (1).  

3. Use NN: for each unlabeled object 1u k Nx X {x x }    assign the most similar class in sense 

( )H x x  of labeled object 1c kx X {x x }   . 

Formally written: 
1

arg max ( ) 1i i j
j k

x H x x i k N
 

      . 

End of algorithm 

Note that in the proposed algorithms there is no need to store matrix H  in memory N N  entirely: it is 

enough to store the clustering matrix of size  N L , where 
1

M

m

l

L L


 , in this case H  can be computed 

dynamically. In practice, L N , for example, when working with image pixels.  

6. THEOETICAL ANALYSIS OF CANN 

Let's recall the problem statement: At the input we have sample of objects NX  = 1{ }Nx x . There are two 

types of objects in the sample:   

 1{ }c kX x x   - labeled objects with classes 1{ }c kY y y  , {1 }cI k   - object indices 

 1{ }u k NX x x   - unlabeled objects, { 1 }uI k N    - indices of the objects 

For simplicity assume that he classes do not intersect, run L  clustering by one algorithm   with random 

parameters 1 L  .  

Let's introduce the following notations for ui j I  :  

 

ℎ𝑖(𝑥𝑖, 𝑥𝑗) = {
1, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝜇𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑥𝑖, 𝑥𝑗 𝑖𝑛𝑡𝑜 𝑜𝑛𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

0,                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 
1 0 1

1

( ) ( ), ( ) ( )
L

l i j

l

L i j h x x L i j L L i j


       , which represent the number of variants of clustering, 

in which algorithms has voted to combine 
i jx x , or against, respectively .  

Let ( )Y x  - hidden true labels of the classes of unlabeled objects  ux X . Let's introduce a quantity for 

ui j I  :  

𝑧(𝑥𝑖 , 𝑥𝑗) = {
1, 𝑖𝑓 𝑌(𝑥𝑖) = 𝑌(𝑥𝑗)

0, 𝑖𝑓 𝑌(𝑥𝑖) ≠ 𝑌(𝑥𝑗).
 

 

In the nearest neighbor methods (NN) for all ui I  we assign label iy  a values y , where y  - class of 

object, ( )
j c

i j
x X

x arg max H x x


      

The following theorem holds  



Theorem 1. Let 1l { L}   , 1
2

[ ( ) 1 ( ) 1]l i j i jP h x x z x x      , 1and  
0 ( )L i j const   

ui j I   . 

Then in the algorithm CANN for object i ux X  the probability of incorrect classification  

( ) [ ( ) ] 0er i iP x P Y x y    for L  .  

The theorem shows that the probability of a classification error by the CANN algorithm tends to zero under 

the assumptions that the classes of objects do not intersect and that the algorithms of cluster analysis that are 

used correctly classify pairs of objects to one or different clusters with probability more  1/ 2 , that is, they do 

not act at random. 

7. EXPERIMENTAL ANALYSIS  
 

A typical RGB image contains three channels: the intensity values for each of the three colors. In some cases, 

this is not enough to get complete information about the characteristics of the object being shot. To obtain data 

on the properties of objects that are indistinguishable by the human eye, hyper spectral images are used.  

For an experimental analysis of the developed algorithm, we used a picture of Pavia University scene with 

size of 610 x 340 pixels, which contains 103 spectral channels. The spatial resolution of the image is 1.3 m. 

Figure 5a shows the RGB composite images (channels 40, 50 and 70), and in Figure 5b) the standard image 

partition into thematic classes is given. 

 

 

 

 

                                а)           б) 

Рис. 4. Гиперспектральное изображение Pavia University scene 

(RGB композит) (а) и размеченные данные (б). 

 

 
 

Figure 3: Hyper spectral image of Pavia University scene a) RGB composite images b) Marked data 

 

Note that the image has unmapped pixels that are not assigned to any of the nine classes. These pixels were 

excluded from consideration in the analysis. 

In an experimental analysis of the algorithm, 1% of the pixels selected at random for each class made up 

the labeled sample; the remaining ones were included in the unlabeled set. 

To study the effect of noise on the quality of the algorithm, randomly selected r% of the spectral brightness 

values of the pixels in different channels were subjected to a distorting effect: the corresponding value was 

replaced by a random variable from interval 

To study the effect of noise on the quality of the algorithm, randomly selected r %  of the spectral 

brightness values of the pixels in different channels were subjected to a distorting effect: the corresponding 

value x  was replaced by a random variable from interval [ (1 ), (1 )]x p x p  , where ,r p  - initial 

parameters. The noisy data table containing the spectral brightness values of the pixels across all channels was 

fed to the input of the CASVM algorithm, and the K-means algorithm was chosen as the basic algorithm for 

constructing the cluster ensemble. Different variants of partitioning were obtained by varying the number of 

clusters in the interval [30,30 ]L , where L  was equal to 120.  

In addition, for the construction of each variant of the solution, channels were randomly chosen, the number 

of which was set to 2. To speed up the operation of the K-means algorithm and to obtain more diverse 

groupings, the number of iterations was limited to 1. 

Since the proposed algorithm implements the idea of distance metric learning, it would be natural to 

compare it with a similar algorithm (SVM method), which uses the standard Euclidean metric, under similar 

conditions (the algorithm parameters recommended by default in Matlab environment). 



Table 1 shows the accuracy values of the classification of the unlabeled pixels of the Pavia University scene 

for some values of the noise parameters. The running time of the algorithm was about 2 minutes on a dual-

core Intel Core i5 processor with a clock speed of 2.8 GHz and 4 GB of RAM. As it is shown in the table, 

CASVM algorithm has better noise resistance than SVM algorithm. 

 

Table 1: Accuracy of CASVM and SVM under various noise values 

Noise parameters ,r p  0%, 0 10%, 0.1 20%, 0.2 30%, 0.3 

CASVM 0.82 0.80 0.78 0.77 

SVM 0.83 0.75 0.66 0.64 

   

8. CONCLUSION 

The paper considers one of the variants of the problem of pattern recognition - the task of semi-supervised 

learning. The algorithms CASVM and CANN were developed to solve this problem. They are based on a 

combination of methods of collective cluster analysis and kernel classification methods. 

A probabilistic classification model using a cluster ensemble was proposed. Within the model, the behavior 

of error probability of the CANN algorithm was analyzed. The assumptions are formulated, in which the error 

probability tends to zero. 

An experimental study of the proposed algorithm on a hyperspectral image was performed. It was shown 

that the CASVM algorithm is more noise-resistant than the standard method of SVM. 
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