

The physical and mathematical model used in the monograph, which gives a rigorous description of the main processes of heat and mass transfer in combustion chambers, and the method of constructing a geometric model of a real combustion chamber in combination with modern computing technologies, using capabilities of modern supercomputers, enable us to carry out a comprehensive study of all characteristics of the solid fuel combustion process in a rather short period of time.

SYMBOLES AND ABBREVIATIONS

\(V \) – volume, \(m^3 \)
\(\rho \) – density, \(kg/m^3 \)
\(S \) – source member
\(\phi \)
\(p \) – pressure, Pa
\(\tau_{ij} \) – viscous stress tensor
\(x, y, z \) – coordinates
\(\phi \) – generalized transport variable
\(\Gamma \) – generalized exchange coefficient
\(\delta_{ij} \) – Kronecker symbol
\(m \) – mass, kg
\(T \) – temperature, \(^\circ C(K) \)
\(h \) – specific enthalpy, \(kJ/kg \)
\(k \) – kinetic energy of turbulence, \(m^2/s^2 \)
\(K_{abs} \) – optical absorption coefficient, \(1/m \)
\(D \) – diffusion coefficient, \(m^2/s \)
\(e \) – the rate of dissipation of turbulent kinetic energy, \(m^2/s^3 \)
\(\mu \) – dynamic viscosity, \(kg/m.s \)
\(C_1, C_2, C_3 \) – empirical constants of the turbulence model
\(\sigma \) – stoichiometry coefficient
\(d \) – particle diameter (m)
\(E_a \) – activation energy (\(J/mol \))
\(k_d \) – diffusion coefficient
\(k_c \) – chemical velocity coefficient
\(S_{err} \) – total external surface per unit mass of the coke particle, \(m^2 \)
\(Q_{chem} \) – energy released in a chemical reaction
\(I_\nu \) – intensity of radiation, \(kW/m^2 rad \)
\(\Omega \) – solid angle, \(rad \)
\(\Theta \) – flat angle, degree
\(Pr \) – Prandtl number
\(Ma \) – Mach number