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CHAPTER 1 

Security estimates updating of Asymmetric cryptosystems for 
modern computing 

V.K. Zadiraka , A.M. Kudin, I.V. Shvidchenko & P.V. Seliukh, 
V.M. Glushkov Institute of Cybernetic of NAS of Ukraine, Kyiv, Ukraine  

P. Komada, 
Lublin University of Technology, Lublin, Poland 

A. Kalizhanova, 
al-Farabi Kazakh National University, Almaty, Kazakhstan  

INTRODUCTION 

Today RSA is still one of the most common and widespread asymmetric cryptosystems. 

A lot of cryptographic protocols that deal with encryption, digital signature, and distribution of 

key information are based on RSA scheme. The basis of scheme’s security is a complex 

theoretical and numerical factorization problem: to find the prime divisors of large n. 

The issue of cryptosystem’s security in practice is associated with the task of correct choice 

of cryptosystem parameters. A recent research by a group of scientists led by Arjen Lenstra (2012) 

confirms the problem of RSA implementation, namely generation of parameters that will ensure 

the system’s security in practice. From among 11.5 million of RSA key certificates under research 

there has been found more than 26000 vulnerable keys with size of 1024 bits and 10 keys with 

size of 2048 bits. In this case the vulnerability was to factorize the cryptosystem’s module.  

This vulnerability was implemented through the use of common divisors for modules, what 

is more, only a small amount of such common divisors was found as a result of key reissuing for 

the same owner. At most this situation is caused by the presence of the global problem of 

generating “qualitative” modules that are built with large prime numbers (Bernstein et al. 2013, 

Heninger et al. 2012), besides, the authors conclude that crossing to larger modules does not lead 

to the expected decrease of vulnerable keys number. The mechanisms for generating prime 

numbers that are used for constructing modules should be additionally studied. 

Given the above we formulate the problems of effectiveness analysis of applying different 

computational models (including probabilistic, parallel and hybrid) for factorization and discover 

the existence of polynomial complexity algorithm of numbers factorization of special form; and 

as a result to clarify practical security of RSA cryptosystem.  

We will discover the amount of “secure” RSA modules. If we find out the limited amount 

of such modules of defined size and this limitation turns out to be the polynomial of the module’s 

size then there is a critical issue of RSA security in practice, namely if the cryptanalysis or RSA 

is P  (by factoring the module). 

Adi Shamir offered the research of RSA module break “cost” of certain length by 

constructing a specific factorization machine (Shamir 1999). This research was continued in 

Shamir, Tromer and Bernstein papers (Shamir et al. 2003, Bernstein 2001). This task is urgent 

now due to cloud computing and flexible computing architecture models (Programmable logic 

device (PLD)) rise. To research the impact of new computer (cloud computing, etc.) technology 

on complexity and RSA module break cost is the main idea of the article.  



1.1. THE EFFECTIVENESS OF DIFFERENT COMPUTATIONAL MODELS FOR 

NUMBERS FACTORIZATION 

Let us briefly look through the characteristics and applicability of sequential, parallel and 

probabilistic computational models. It should be noted that quantum calculations and their 

applicability to the cryptography problems, in particular factoring problem have gained a wide 

interest in recent years (Zadiraka et al. 2013). P.W. Shor (1999) has proved the polynomial 

complexity of factorization and discrete logarithm for this computational model. This gives an 

additional possibility to construct effective factor algorithm and to discover more precisely the 

connection between computational models and their practical implementation. This topic requires 

a separate discussion, so it is beyond the scope of this chapter. 

The most studied sequential computational model uses determined operations performed 

one after another and the results of the previous calculations are used in the next step. 

Deterministic factoring algorithms are fully expressed through this model of computations. Today 

there are no practical ways to significantly improve the performance of such factoring algorithms 

for arbitrary input. 

The extension for sequential model is probabilistic. It is a good framework for inherently 

probabilistic algorithms. There are two types of algorithms: Monte Carlo and Las Vegas. The 

algorithms of the first type give the answer that may be correct for some random sequences that 

are generated during the algorithm, but may be incorrect. The probability of false answers is 

reduced by repeated execution of the algorithm.  

The Las Vegas algorithms respond correctly or finish with answer “don’t know”. The 

probability of getting an incorrect result is zero. Exactly the study of probabilistic factoring 

algorithms can lead to getting an effective performance of algorithms for numbers factoring of 

special form. This can happen due to the “nature” of Las Vegas algorithm to “split” input data by 

subsets with different estimates of algorithm’s complexity. 

Consider the algorithm which can be divided into blocks of operations, the result of which 

indirectly affects the further work, so the branches for independent computing that can be 

executed simultaneously are allowed. This arrangement of computing defines the parallel 

computational model. The application of parallel model for k  separated branches is expected to 

give at best the k  time’s speedup of algorithm runtime (linear decrease computational 

complexity).  

Unfortunately, in practice, to achieve such speedup for factoring algorithm is impossible 

because of the inability to efficiently use CPU time of each of k  branches through the existing 

need for communication between processors. 

The well-known Brent’s review (Brent 1990) states that certain factor algorithms ECM 

(Elliptic Curve Method (Lenstra 1987) for example) are good-suited for parallelization that yields 

almost linear effect of decreasing computational complexity, but some algorithms (including rho-

Pollard method (Pollard 1975)) can achieve this effect only in theory (Crandall 1999). 

Recent research of Pollard’s method (Crandall 1999, Koundinya 2013) shows that the linear 

effect can be achieved only for the small number of parallel branches. Note that there are two 

possible ways to parallelize the algorithm – to build various elements of one random sequence, 

or to look up different sequences. Namely, the application of the second approach and possibility 

of its effective improvement are discussed below. 

Note that the mentioned above can be applied only for general factoring algorithms. It is 

clear that these estimates are the upper bounds for factorization the numbers of special form. 

Moreover, the study the effectiveness of factorization algorithms determines the so-called 

problem of “impact of algorithm optimization on the PC’s structure”. Or rather it can be defined 

as the problem of constructing an effective computational model (possibly hybrid) for number 

factoring and discovering its implementation on the base of programmable logic devices PLD, 

GPUs. This confirms the relevance of discovering the existence of time-efficient factoring 

algorithms of special numbers, some results are discussed below. 



1.2. RHO-POLLARD ALGORITHM 

Pollard’s rho-method is a probabilistic algorithm that once made a significant breakthrough 

and still is not completely researched. The complexity of the algorithm does not depend on the 

factor but on its divisors. Thus, like the ECM algorithm (Lenstra 1987), Pollard’s method is 

effective for factoring multi-prime RSA modules, such numbers of fixed length that are the 

product of more than two primes.  

Pollard used two simple ideas: the birthday paradox (Sekey 1993) and the ability to check 

divisibility of number n  by p  computing ( , )GDC x y n , if modx y p . We can choose the 

starting point 0x , function f  and construct recurrent sequence 1( )i ix f x   which plays the role 

of a “random” sequence. Considering it by the module p , where p  is a divisor of n  there must 

exist two comparable elements.  

Pollard chose 
2( ) 1f x x   as a recurrence. The subtraction of two elements is always 

split into a product 
2 2

1 1 1 1 1 1( )( )k j k j k j k jx x x x x x x x           . These divisors are tested 

as possible for the number n . 

This brings up the question – is it possible to obtain a significant improvement in the 

performance of the algorithm by choosing another recurrent function. The study of this issue 

(Hartman 1982) was carried out only with the use of numerous assumptions that narrow the set 

of numbers to factor. Despite the application of different functions the effectiveness turned out to 

be negative. So we considered the sets of numbers reduced by the module p  and the capacity of 

such sets for the following cases: 2 ' 1p p  , where 'p  is prime; 3(mod4)p   or 

2(mod3)p  . 

Hartman obtained the following results about the capacity of the sets that are generated by 

different functions. 

1.   mod , 0,1,..., 1ax b p x p    is complete set of residues. It is determined as a 

permutation. 

2. If k is odd and  , 1 1k p   , then   mod , 0,1,..., 1kx p x p   is a permutation. 

3. If  ( ) modP x p  is a permutation, then   ( ) modaP x b p  is a permutation for 

0moda p . 

4. If    modP x p  generates the set of size n , then    ( ) modaP x b p  and 

 pbaxP mod)(   are the different sets, but also of the size n . 

5.    pxxP mod2  generates the set of size 
2

1p
. This statement is correct for all 

polynomials of degree 2. 

6. If    xPxP 21 ,  are permutations, then    xPxP 21 ,  does not generate the whole set of 

residue. Little is known about the size of the set. 

7. Cubic polynomial   dcxbxaxxP  33 23
 separates the complete set of residues 

into two size-equivalent subsets corresponding to the following: 

a. 
3x of size  2p b ac ; 

b. xxxx  33 ,  of size  acb
p


 21
3

1
2 . 

8.   xPP 21  generates the set of size less than or equal     xPxP 21 ,min . 

 

http://www.multitran.ru/c/m.exe?t=1615770_1_2&s1=%EE%F1%F2%E0%F2%EE%EA%20%EC%ED%EE%E6%E5%F1%F2%E2%E0


But to discuss only the size of set does not make sense. It is important to consider how 

much calculations should be done to find an item that is congruent to module p  with the 

previously calculated one. If the selected function, and therefore, the generated sequence has 

many “small” loops and does not have “long” loops and “tails” then the probability to find quickly 

the decomposition of number n  is high (Fig. 1.1). But hypothetically this is possible only under 

the condition that n  has only small prime divisors. If sequence has “long” loops then the 

probability that the selected starting element will lead us to the desired collision is high and the 

probability of choosing a starting element, which quickly leads to collision, is low.  

To use high-degree functions is impractical because of the large time-costs of sequence 

calculations. Using the linear function   Nbaxxf mod  the subtraction 

   jcxkcxxx jk  00  does not seem to be random comparing with   12  xxf  

proposed by Pollard (1975). 

 

  
Fig. 1.1. Loops and “tails” in rho-Pollard method 

 
Applying two different linear recurring sequences also does not give any improvements in 

performance; we can conclude nothing about the residue of elements of two such sequences

21 jckcxx jk  , where 21,cc  are the constants. As we can see, the matter of selecting the 

function that generates random sequence for Pollard’s rho-method is still open. 

1.3. SELECTING CRYPTO PARAMETERS 

Let us define n  as a module and e  as an exponent for RSA cryptosystem; these parameters 

are the public key. Cryptosystem’s module is a product of odd primes ip , ui ,..,2,1  where 

2u , and public exponent e  is an integer that takes the value between 3 and 1n , 

1))(,( neGCD  , where )1,...,1()( 1  uppGCDn  – generalized Euler function and some 

additional conditions (Mukhachev et al. 2005). Private key d  is a positive integer that satisfies 

))((mod1 nde  .  

Let consider RSA key size as a length of module n  in bits. NIST limits the set of key size 

values as 1024, 2048 and 3072 bits. In addition, restrictions are imposed on the generation of 

module n  only as a product of two primes qpn   (FIPS PUB 186-4-1).  

The Public-Key Cryptography Standards (PKCS) #1 of version 2.1 and more it is allowed 

to use modules that are the product of more than two numbers (multi-prime modules), but it does 

not determine any restrictions on the choice of divisors. For a fixed size of the module the usage 

of more than two divisors reduces the size of such divisors and thus increases the probability of 

these modules to be factored by the algorithm, the complexity of which depends not on the size 

of factored number but on the size of number’s divisor. 



To deploy RSA cryptosystem first we need to select exponent e , fixed or random integer 
25616 22  e . It is not permitted to choose random primes p  and q  to generate module with 

size of 1024 bits, but only those that satisfy the following (FIPS PUB 186-4-1): 

 1p  has prime divisor 1p , 

 1p  has prime divisor 2p , 

 1q  has prime divisor 1q , 

 1q  has prime divisor 2q . 

Here 1p , 2p , 1q , 2q  are so-called auxiliary primes, p  і q  are primes with conditions. 

For modules of size 2048 and 3072 bits we may use random primes p , q , that are built using 

probabilistic or constructive algorithms of generating prime numbers (Maurer 1990, Gordon 

1984, Zadiraka et al. 2007, Shawe-Taylor 1986). Table 1.1 shows the limitation on the length of 

numbers when using different algorithms of generating primes. The function  plen  is the bit 

length of p . 

 

Table 1.1. Valid length values for auxiliary primes 1p , 2p , 1q , 2q  

 plen  
Min. length of auxiliary 

primes 

Max. value of    21 plenplen   

p , q  probable 

primes 

p , q  provable 

primes 

1024 >100 bits <496 bits <239 bits 

2048 >140 bits <1007 bits <494 bits 

3072 >170 bits <1518 bits <750 bits 

 

Probably the prime number p  is a number generated by the following algorithm: to 

determine the length of the desired number p ; to generate odd random number; to check if the 

number is prime using a probabilistic test. The most widespread is Miller-Rabin test. The 

algorithm tests if given N  is prime following the next steps: 

1. To calculate t  and s  so that sN t21 , s  has to be odd. 

2. To randomly choose b , 22  Nb . 

3. To calculate Nby s mod . 

4. If 1y  and 1 Ny , then while ti   and 1 Ny  starting from 1i  do: 

Nyy mod2 . If 1y , then Exit with “ N  is composite”, otherwise 1 ii . 

5. If 1 Ny , then Exit with “ N  is composite”. 

6. Exit with “ N  is composite”. 

 

While constructing the module the following requirements on the amount of rounds of 

Miller-Rabin testing of the generated number should be met. This is caused by the decreasing 

probability to choose composite number as a prime with each additional round. Below there is the 

table (see table 1.2) with the amount of required rounds of testing for error level less than 
1002

 

is given. 

  



 
Table 1.2. Minimum number of rounds of Miller-Rabin testing when generating primes for RSA 

scheme, the error level is 
1002

 

Parameters Number of rounds 

100,,, 2121 qqpp bits 

p  and q : 512 bits 

For 2121 ,,, qqpp : 38 

For p  і q : 7 

140,,, 2121 qqpp  bits 

p  and q : 1024 bits 

For 2121 ,,, qqpp : 32 

For p  і q : 4 

170,,, 2121 qqpp  bits 

p  and q : 1536 bits 

For 2121 ,,, qqpp : 27 

For p  і q : 3 

 

Note that the use of probably prime numbers while implementing the cryptosystem not only 

significantly increases the time of module constructing but in case of mistaken use of composite 

number can cause malfunctions, which reduces the resistance to cryptanalysis. So we refer to 

deterministic algorithms that construct prime numbers in polynomial time. With the help of these 

algorithms we can reduce the problem of selecting the module by testing number’s primality to 

the problem of generating provably prime number. Let’s take a look at Maurer’s (1990) and 

Shawe-Taylor’s algorithms (1986). They are the so-called “tornado” algorithms: small prime 

number is used at the first iteration. Each following iteration determines provably prime number 

in a certain range that guarantees an increase of the resulting number. 

 

Maurer’s algorithm of generation of provably prime random number 

 

The input of the algorithm is integer k  – the number of bits of the desired prime. The 

algorithm uses the following parameters: L  is the border for trial divisions; M  is a parameter 

that ensures the existence of the desired prime. 20M  is recommended.  

1. If Lk 2 , then to generate random odd k -bit number N  and to test its primality 

with trial division. Repeat until a prime number N  is generated. Exit.  

2. If Mk 2 , then let 
2

1
r , else repeat the following until Mrkk  . 

2.1.1. Choose random integer s  , 10  s , 
12  sr . 

3.  
1 1k rk  . Repeat steps 1-2 to construct 1k -bit random prime q . 

4. Let )2/(2 1 qt k .  

5. Let R  is random integer, tRt 2 . 12  RqN . 

6. Let a  is integer and 11  Na . If 1)(mod1  NaN
 and 

1),1( 2  NaGCD R
, then Exit with “ N  is prime”. 

7. Else repeat steps 5-6. 

 

The second algorithm of constructing provably prime random number is Shawe-Taylor’s 

algorithm. The input of the algorithm is an integer k  – the number of bits of the desired prime. 

The algorithm uses parameter L  as a border for trial divisions. 

 

Shawe-Taylor’s algorithm 

 

1. If Lk 2 , then to generate random odd k -bit number N  and to test its primality 

with trial division. Repeat until a prime number N  is generated. Exit.  



2. If k  is odd, let 2/)3(1  kk . If it is even, let 12/1  kk . Recursive pass the 

algorithm with input parameter 1k  to construct a 1k -bit prime number. 

3. Let x  is random integer and 
kk x 22 1 

. 

4. Let t  is the smallest integer greater than )2/( qx . 

5. If 
ktq 212  , then let t  be the smallest integer greater than )2/(2 1 qk

. 

6. Let 12  tqN . 

7. Chose random integer a , 11  Na , let Nax t mod2 . If 1x , 

1),1(  NxGCD , Nxq mod1 , then N  is generated prime. 

8. Else let 1 tt  and repeat steps 5-7. 

 

However, the above algorithms guarantee only the primality of generated numbers. 

Additional requirements for numbers that are divisors of RSA module are the property of their 

so-called “maximization of the complexity of specialized factoring algorithms” (Zadiraka et al. 

2007). For example, for 1p  algorithms this property is revealed if n  has prime factor p  so 

that number 1p  has sufficiently large power-smooth boundary (Mukhachev and Khoroshko 

2005), in other words, 1p  has large prime factors. This divisor p  is called “strong” prime 

number. So we bring up an important question about the number and the distribution of such 

strong primes. 

1.4. DISTRIBUTION AND AMOUNT OF STRONG PRIMES 

Let p  be a classic strong prime if the following requirements are met: 

 

 )(mod1 rp  , )(mod1 sp  , 1(mod  )r t , (1.1) 

 

where r , s , t  are large primes. This means that p , r , s , t  can be shown as 12  jrp , 

12  ksp , 12  ltr , whereby the lower the numbers lkj ,,  the better.  

Note that a generalization of the classical notion of prime number is a concept of strong 

primes that maximize the complexity of all known algorithms for factorization. 

R.L. Rivest denied the idea of need to use strong primes as factors for RSA modules (Rivest 

and Silverman 1999). On the base of Lenstra’s algorithm he wanted to show that the choice of p  

did not take an effect on the efficiency of obtaining the factorization, and that, in general, it is 

enough to choose random primes to obtain RSA modules. Later his ideas were refuted, since some 

algorithms, including ECM, work better if the number 1p  is smooth.  

Here follows the Gordon’s method of generating strong prime numbers. 

1. Construct a random prime number s  of pre-selected size. We can select a 

pseudorandom number x  of the desired size and using trial divisions we may leave 

the numbers in the range ]log,[ 2 xxx   that do not have small divisors. Among the 

remaining numbers choose prime number s  with the help of primality test. 

2. Generate random t  in the same way. 

3. Using trial division and primality test generate prime 12  ltr , sorting out l  in 

]log,1[ 2 t . 

4. Calculate rsrssruu sr mod)(),( 11   . 

5. If u  is odd, then let up 0 , else rsup 0 . 

6. Test if krspp 20   is prime for 0,  1,  2,  ...k   



 

Assume the condition of applying strong primes while generating cryptosystem’s module. 

The following conditions for factors should be met:  

 

 

5.0,,0,,1|,,1|,,1|

5.0,,0,,1|,,1|,,1|

6543321211

3213321211

654

321
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xxxnqqqnqqqnqqq

xxxnpppnpppnppp

xxx

xxx

 (1.2) 

 

Let )(npi  be i -th the greatest divisor of n . Let })(,1:{#),( x

ii ntpnttxnw   is 

the amount of integers less or equal n  for which )(npi  does not exceed xn . Applying the result 

of Knuth and Trabb Pardo (1976) we have the probability that random number has the greatest 

divisor bigger than some border: 

 

 
.ln}{

1

1 x
t

dt
nqP

x

x    (1.3) 

 

Using Adamar and Vallee Poussin (Porter 1915) estimates we obtain the following estimate 

of the number of classic strong primes in  ba, : 

 

 
.

ln
lnlnln),( 321 

b

a

s
t

dt
xxxba  (1.4) 

 

Considering the independence of the described divisors the estimate amount of RSA 

modules is defined as: 

 

 .)),(( 2bas  (1.5) 

 

Let us compare the resulting estimate of the number of RSA modules generated with 

random primes (no requirements for “strong” primes). RSA module is a so-called semiprime 

number because it has exactly two prime factors. The number whose prime factors less particular 

bound will be called B -smooth. Works (Ishmukhametov and Sharifullina 2014) present the 

distribution of semiprime and smooth numbers, the estimates are based on Riemann hypothesis. 

Probabilistic function )(yg  corresponds the probability that the number y  will be “semiprime”. 

Function approximation using series summation by prime numbers p : 

 

 
.

)ln(ln

1
)( 

 


yp pyp
yg  (1.6) 

 

Using Mertens’s formula: 

 

 
),1(ln

ln
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p

p

xp
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 (1.7) 

 

and Abel’s theorem results we have: 
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Let ),( yx  be the amount of all y -smooth numbers less than x , we have the recurrent 

formula for the calculation: 
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where kp  – k -th prime ( 21 p ), 
ln

( , 2) 1.
ln 2

x
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There are rough estimates for calculating the number of smooth numbers because with the 

growth of smoothness bounds the computational complexity increases exponentially. Hildebrand 

(1986) obtained the following estimation:  
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Here )(u  is the Dickman-de Bruijn function, yxu ln/ln , )(u  is the solution of 

differential equation 0)1()(  uuu   for 1u , this approximation is valid only with the 

simultaneous growth of x  and y  keeping yx ln/ln  as a constant. Here is the approximate 

formula for 
1/2(ln ln ln )y x x : 
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But to estimate the capacity of the set of smooth numbers with practically used boundaries 

this approximation is inapplicable. 

The considered estimations of semiprime number’s distribution give an opportunity to 

present the size of the whole set. To solve the problem of RSA crypto parameters choice we 

should restrict this set only by choosing such semiprimes that are not smooth for some smoothness 

border B  in order to maximize the complexity of solving the factorization problem of semiprime 

numbers.  

In the above-mentioned notations we are interested in the following estimation for the 

number of semiprimes in the range ],2[ T  that are not B -smooth (Ishmukhametov and 

Sharifullina 2014): 
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On the other hand it is possible to evaluate the amount of B -smooth numbers in ],2[ T  

with the help of combinatorial methods and group theory. It makes sense to choose primes as 

smoothness boundary. So having fixed kpB   as k -th prime number, the problem to evaluate 

the number of combinations 



ki

i
ipx

,1


 where Tx  . Note that the estimates (1.4) and (1.12) 

are close in value, but (1.4) is obtained in much easier way and takes into account the condition 

of choosing “strong” primes.  

In general, the following statements are applicable for implementing RSA cryptosystems:  



1. it is necessary to impose the restrictions for primes that are used for generation RSA 

modules for system’s security in practice;  

2. the output set algorithms that generate such primes have appreciably less cardinality 

of a set than cardinality of prime number set.  

 

For these reasons, we formulate the hypothesis that there exists a polynomial complexity 

algorithm that enumerates the set of “secure” RSA modules. The above estimations support this 

hypothesis.  

1.5. FEATURES OF FACTORIZATION ALGORITHM ELABORATION FOR CLOUD 

COMPUTING 

The first problem of factorization price estimating for cloud computing is a form of ordering 

the services, which are typically given by providers. For example, Windows Azure provides 

services in a form of virtual machine with specific characteristics of the CPU, memory and disk 

space (Accessed June 3 2016. http://azure.microsoft.com/en-us/pricing/details/cloud-services). 

The most powerful architecture which is offered “for working applications with large databases, 

server applications and high-speed applications” (e.g., “D14” has the characteristics of 112 GB 

RAM, 800 GB of disk space, 16 core processor) costs $2.611 US per hour or about $1943 US per 

month. 

The cost of computing module rent with random configuration for most cloud platforms 

may be estimated using the on-line calculators (Accessed June 3 2016. https://cloud.google.com/ 

products/ calculator, http://www.hpcloud.com/pricing). Thus, a computer module in the cloud 

Google Cloud Platform with the configuration similar to “D14” costs $5.36 US per hour, but the 

monthly rent will cost $689.08 (Accessed June 3 2016. http://azure.microsoft.com/en-

us/pricing/details/cloud-services). In HP's Public cloud the configuration, aimed at calculating the 

maximum power (30 HP Cloud Compute Units, 4 virtual cores, 60GB RAM, 540GB ephemeral 

disk) is $1.35/hr ($985.50/mo.) (Accessed June 3 2016. http://www.hpcloud.com/pricing). You 

can also choose virtually unlimited (theoretically – only for the price) number of such machines. 

So, to order a specific computing architecture targeted at particular factorization algorithm 

is difficult, so you need to rely on many computing nodes of standard minimum configuration 

aimed at powerful calculations that operate in parallel. The price of this node (e.g., n1-highcpu-2 

for the cloud Google Cloud Platform) is $38.84 per month. 

The second problem is that for factorization price estimating it is also necessary to choose 

the fastest at present, universal (which can be used for any kind of numbers) algorithm, which 

allows the simple implementation of a parallel computing model. The choice of this algorithm for 

factorization price estimating has similar value to the choice of the universal models of 

computation (Turing-Post machine, normal Markovian algorithm, brute-force program, etc.) for 

algorithms complexity estimate. 

The generally accepted solution to this problem is the choice of algorithm GNFS (Buhler 

et al. 1993, Lenstra and Lenstra 1993, Couveignes 1993, Ishmukhametov and Sharifullina 2014). 

This algorithm, like the most effective factorization algorithms at present time operates quite a 

simple idea, proposed by Fermat, such as: if you find a pair of numbers  BA, , that satisfy the 

equation nBA  22
, then   BABAn  . So, if  nm  , then ,...2,1x  calculate 

the value of polynomial     nxmxq 
2

 until  xq  is not a perfect square. 

A simple generalization of Fermat’s idea is to search for pairs of numbers that satisfy more 

general equation  nBA mod022   (Ishmukhametov and Sharifullina 2014). Along with this, 

it appears that the value of the polynomial  xq  is the so-called “smooth” numbers. A pair of 

integers  BA, , is called “smooth” (on base factor F , formed of primes) if: 

1. The relation  nBA mod022   is performed. 



2. B  is multiplied only by prime factors that belong to the set F . 

 

Representation of polynomial values  xq  by the elements of a vector space over F  to 

search the full squares has led to Dixon algorithm first, then to quadratic sieve (QS), but as a 

generalization of the latter – the general number field sieve (GNFS). We will briefly present the 

main stages of this algorithm to discuss major evaluations of its performance (Ishmukhametov 

and Sharifullina 2014): 

1. Choose irreducible polynomial degree 3d . 

2. We choose an integer 
     1/ 1 1/, d dm n m n   , and represent n on the basis of m: 
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3. With this representation we bind irreducible in the ring  xZ  (the ring of 

polynomials of the variable x  with integer coefficients) polynomial: 
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4. Define sieving polynomial  baF ,1  as a homogeneous polynomial of two variables 

a  and b : 
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5. Also define another polynomial   mxxf 2  and the corresponding homogeneous 

polynomial   bmabaF ,2 . The main requirement for pair selection  21, ff  is 

to fulfill the condition:      nmfmf mod21   which is obviously performed in our 

case, because the first polynomial at the point m  is n , and the second is zero. 

6. Choose two positive numbers 1L  and 2L , which define the certain rectangular area 

 221,1 LaLLbSR  , called “sieve area”. 

7. Let   – root of polynomial  xf1 . Consider the polynomial ring  Z  (practically 

root   is not evaluated, and is only used for formal description of the algorithm). 

Define the algebraic factor base 1FB , consisting of a first-order polynomial form 

ba  with the norm which is prime number. These polynomials are simple 

irreducibility elements in the ring of algebraic field  QK  . The absolute value 

of the norms of polynomials from factor base 1FB  are bound above by some constant 

1B . 

8. At the same time let define rational factor base 2FB , consisting of all prime numbers 

bound above by second constant 2B . 

9. To be able to check the final stage of the algorithm, whether the determined 

polynomial is perfect square, we define a relatively small set of polynomials dc   

of the 1 order, the norm of which is also a simple number. Let this set be marked as

3FB . It must satisfy the condition  31 FBFB  is called Quadratic Character 

Factor Base. 



10. Further simultaneous sieving of polynomials based on 1FB  is performed and 

integers  based on 2FB  to obtain the set M , consisting of smooth pairs  ba, . The 

pair  ba,  is called smooth if   1, baGCD  and the polynomial ba  and the 

number bma  are multiplied entirely by the relevant factor bases 1FB  and 2FB . 

The number of smooth pairs in the set M  must exceed the total power of three factor 

bases  at least by two units. 

11. The next step is to search the subset MS  so that the product of all pairs  ba  

is 
2H  and pairs  bma   is 

2B , ZBZH  , . To search the set S  as in the 

quadratic sieve method, a system of linear algebraic equations is formulated with 

coefficients from of the set  1,02 F , the solution of which will be the numbers of 

the set S . 

12. Next we form the polynomial: 

 

       
  


Sba

baxfg
,

2

1 .  

 

13. If the whole procedure is performed correctly, then the polynomial  g  is a perfect 

square in the ring of polynomials  Z . We extract square roots of the polynomial 

 g  and an integer 
2B , finding some polynomial    and the number B . 

14. Replace the polynomial    with the number  m . 

15. So, a pair of integers  BA, , satisfying the condition  nBA mod022   has been 

found. 

 

As seen from the description of the main stages of the algorithm there are two key 

parameters that affect its complexity – the size of the sieve area and the size of factor base. The 

complexity estimate of the algorithm GNFS is easy to measure by using 

         


1
lnlnln1, nnoc

n ecL  function. The most famous current estimates for the classical 

method GNFS –  







 1..92,1;

3

1
oLn

 (Ishmukhametov and Sharifullina 2014), for the “group” 

GNFS (several numbers are factorized at a time for which common screening results, are used the 

average factorization time per each number is calculated)  







 1704,1;

3

1
oLn

 (Bernstein and 

Lange 2014). 

For approximate real cost estimate of factorization for the clouds given above let’s give the 

estimate of the sieving area (the most complicated stage) of the classical method GNFS. It is 
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1
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oLn .  

If we take this estimate for the number of computing nodes of “minimal” configuration then 

the factorization cost estimate of 1024-bit number is hundred trillion US dollars, if the number is 

factorized during a month, which of course is much worse than the factorization cost estimates 

specially designed by using the devices for factorization (TWIRL or SHARK) (Shamir and 

Tromer 2003, Franke 2005). So the cost of the system SHARK (Franke 2005) for factorization of 

1024-bit number is evaluated 160 million US dollars, if the number is factorized during a year. 

Such estimate is explained first of all, by the lack of flexibility of cloud computing services 

order, and, secondly, by the direct use of existing implementations of the algorithm GNFS for 

cloud technologies. The doubtless advantage of cloud computing that determines the relevance of 



further research in this area, is their relatively greater availability compared to specialized 

calculators and opportunity to use the so-called “peak-mobilization” operation mode in “critical” 

cases – the use of cloud resources across the corporation, state and international association. 

1.6. CONCLUSIONS 

Existing standards of implementation and usage of asymmetric cryptosystems impose 

restrictions on the crypto parameters generation. This situation is conditioned by modern advances 

in solving the problem of factorization of large numbers. The interest of assessing RSA security 

in practice is the highlighted issue of size or rather the nature of size growth of the set of secure 

crypto parameters, namely semiprime numbers that have additional constraints about their 

divisors.  
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