

STRONGLY COUPLED COULOMB SYSTEMS

Final Program & Book of Abstracts

Kiel, July 30–August 4, 2017 Wissenschaftszentrum Kiel

Monday, July 31

08:30	Opening	
	I: Dense and astrophysical plasmas	
[keynote]	S. Mazevet Ab initio equation of states for planetary and exoplanetary modeling V.K. Gryaznov	24
	Thermodynamics of deuterium at terapascal pressure range	25
	M. Schöttler Miscibility gap of hydrogen-helium mixtures	26
10:00	V. Mintsev The possibilities of proton radiography for the strongly coupled plasma EOS measurements	27
10:15	Coffee break and informal discussions	
	II: Classical charged particle systems	
[invited]	M. Manghi Ionic transport through hydrophobic nanopores: theory and experiments E. Allahyarov	28
	The role of Coulomb correlations in nano-composite materials with high-k inclusions	29
[invited]	Experiments and simulations on dusty plasmas	30
	Transport properties of a disordered 2D complex plasma crystal	31
12:15	W. Schröer Critical and non-critical fluctuations in mixtures of ionic liquids with alcohols in the vicinity of the liquid-liquid phase transition	32
12:30	Lunch and informal discussions	
Session	III: Dynamics of correlated quantum Coulomb systems	
	S. Kuhr	~ ~
	<i>Quantum-gas microscopes-quantum simulation with single-particle access</i> . N. Schlünzen	33
[invited] 15:45	Ab initio simulations of the transport of strongly correlated fermions	34
	Simulation of stopping power and evolution of ion temperature in plasmas	35
10:00	S. Tanaka Constructing the free energy of finite-temperature spin-polarized electron liquids from quantum many-body theories	36
16:15	Coffee break and informal discussions	

Poster introductions and poster session I 16:30–18:00

Tuesday, August 1

Session IV: Dense and astrophysical plasmas

00.45		
	J. Vorberger Energy relaxation in warm dense matter	37
	Interplay between quantum electrons and coupled ions: ion-electron temperature relaxation in dense hydrogen	38
09:30	C. Lin Ionization potential depression in terms of the dynamical structure factor	39
09:45	A.S. Shumikhin	00
10.00	Equation of state and transport properties of metals in warm dense matter regime Y. Hou	40
10.00	Influence of the ionization on ionic transport properties in the warm dense regime	41
10:15	Coffee break and informal discussions	
Session	V: Confined and mesoscopic Coulomb systems	
10:45	G. Baym	
	Phase transitions in spin-orbit coupled systems	42
11.00	Excitonic condensation and quadriexcitons in a symmetric electron-hole bilayer	
	with valley degeneracy: QMC simulations	43
11:45	Yu.E. Lozovik	
	Strongly correlated electron-hole 2D systems: current status and perspectives	44
	I.Ya. Polishchuk	
	Charge density waves in the electron-hole liquid in the coupled quantum wells	45
12:30	Lunch and informal discussions, IAB meeting	
Session	IV: Dynamics of correlated quantum Coulomb systems	
14:45	V.N. Valmispild	
	Time-dependent calculation methods for studying the electronic dynamics of	
	correlated systems	46
15:00	Z. Jurek	47
15:15	Simulations of high intensity x-ray generated plasmas	47
	Phase transitons in low-Z warm-dense-mater Carbon systems; NPA-DFT pre-	
	dictions of EOS, conductivity and XRTS spectra	48
15:30	B.L. Witte	
	Warm dense matter demonstrating non-Drude conductivity from observation of	40
15.45	non-linear plasmon damping	49
15:45	H. Ruhl	E0
16.00	Quantum MD simulations in strong EM fields	50
10.00	Thomson scattering from dense non-equilibrium plasmas	51
		0.

16:15 Coffee break and informal discussions

Poster introductions and poster session II 16:30–18:00

Historical remarks

- 17:45 W. Ebeling
 - What is the correct choice of the plasma partition function and the lowering ofthe ionization energy-on contributions by Planck and Unsöld52

Wednesday, August 2

Session VII: High-energy-density plasmas in the laboratory

08:45	S.H. Glenzer	
[keynote]	Ultrafast probing of dense plasmas–visualizing dynamics of Strongly Coupled Coulomb Systems	53
09:30	D.H.H. Hoffmann	
00.45	Accelerator driven high energy density science: status of HED physics at FAIR and GSI	54
09:45	T. Döppner	F F
10.00	Ionization measurements in 30-fold compressed, near-degenerate plasmas . G. Norman	55
10.00	Ionization of molecules at the fluid-fluid phase transition in warm dense hydrogen	56
10:15	Coffee break and informal discussions	
<u> </u>		
Session	VIII: Confined and mesoscopic Coulomb systems	
	A. Perali	
10:45 [invited]	A. Perali Strong electron correlations in graphene and related materials	57
10:45 [invited]	A. Perali Strong electron correlations in graphene and related materials E.H. Hwang	
10:45 [invited] 11:15	A. Perali Strong electron correlations in graphene and related materials	57 58
10:45 [invited] 11:15	A. Perali Strong electron correlations in graphene and related materials E.H. Hwang Coupled plasmon modes in vertically stacked 2D nanomaterials	
10:45 [invited] 11:15 11:30	A. Perali Strong electron correlations in graphene and related materials E.H. Hwang Coupled plasmon modes in vertically stacked 2D nanomaterials H. Totsuji	58
10:45 [invited] 11:15 11:30 11:45	A. Perali Strong electron correlations in graphene and related materials	58
10:45 [invited] 11:15 11:30 11:45	A. Perali Strong electron correlations in graphene and related materials E.H. Hwang Coupled plasmon modes in vertically stacked 2D nanomaterials	58 59 60
10:45 [invited] 11:15 11:30 11:45 12:00	A. Perali Strong electron correlations in graphene and related materials	58 59

12:30 Lunch and informal discussions

Conference excursion to Lübeck

14:00-20:00

Thursday, August 3

Session	IX: Developments in theoretical methods and numerical techniques			
	C. Pierleoni			
	Coupled electron-ion Monte-Carlo methods for warm dense hydrogen T. Dornheim	63		
	Ab initio Quantum Monte Carlo results for the warm dense electron gas F. Heidrich-Meisner	64		
	Nonequilibrium dynamics in the Hubbard model	65		
10:30	Coffee break and informal discussions			
Session	X: High-energy-density plasmas in the laboratory			
11:00	V.E. Fortov			
[invited]	Quasi-adiabatic multi-shock compression of strongly coupled plasmas: correla- tions and degeneracy	66		
11:30	D.N. Nikolaev			
	Brightness temperature and specific conductivity of multiple shocked initially gaseous protium and deuterium up to 0.4 TPa	67		
	U. Zastrau	~~		
	High energy density plasmas diagnosed with X-ray free electron lasers P. Sperling	68		
	Exploring the physical properties of warm dense water by using Free-Electron-			
		69		
12:30	Lunch and informal discussions			
Session	XI: Electron liquids and complex plasmas			
14:30	A. Principi			
[invited]	Viscosity, thermal conductivity and violation of the Wiedemann-Franz law in hydrodynamic electron liquids	70		
15:00	A. Bataller			
15:15	2D plasma condensation in monolayer semiconductors	71		
[invited]	Collective behavior of Yukawa systems	72		
	T.S. Ramazanov			
	Structural and dynamic properties of strongly coupled dusty plasma of RF discharges	73		
16:00	H. Charan			
	Bow shock formation by supersonic flows in the presence of an obstacle in a two dimensional strongly coupled complex plasma	74		
16:15	Coffee break and informal discussions			
	Poster introductions and poster session III 16:30–18:00			

Conference dinner

19:30-23:00

85

Friday, August 4

Session XII: Plasmas in condensed matter

08:45	A. Tomadin	
[keynote]	Corbino-disk and other viscometers for 2D quantum electron liquids	75
09:30	D. Kreil	
	Plasmon properties in dilute, two-dimensional electron liquids	76
09:45	Ben Van Duppen	
[invited]	Graphene plasmonics	77

10:15 Coffee break and informal discussions

Session XIII: Transport properies of dense plasmas

	10:45	M. French	
[i	nvited]	Superionic phases in C-N-O-H mixtures and the interior of Neptune-like planets	78
	11:15	J. Dufty	
		Electrical conductivity for warm dense matter	79
	11:30	Yu. K. Kurilenkov	
		Oscillating ions: from strong coupling to fusion temperatures	80
	11:45	I. Tkachenko	
		Direct determination of dynamic properties of strongly coupled plasmas	81
	12:00	J. Clerouin	
		Enhancement of nuclear fusion reactions in asymmetric binary ionic mixtures	82
	12:15	S. Ferri	
		Statistical properties of microfields in multicomponent coupled plasmas	83
	12:30	Lunch and informal discussions	

Session XIV: Thermodynamics of strongly coupled plasmas

- 13:45 B. Bernu [invited] Periodic states in the homogeneous two dimensional electron gas at all densities 84 14:15 I. Martynova Non-linear screening effect on parameters of phase transitions and boundaries of complex plasma thermodynamic stability (on the phase diagram) 14:30 I. losilevskiv Enthalpic and entropic phase transitions in strongly coupled plasmas
 - 86 14:45 V. Ballenegger Screened cluster equation of state for the hydrogen-helium mixture 87

15:00 Concluding discussion. Closing remarks

Monday

Poster Session I

P1	A.A. Rykounov	
	An equation of state for CaCO 3 at high pressures and temperatures	90
P2	I. losilevskiy	
	Plasma polarization in compact stars	91
P3	A.A. Ovechkin	
	Effect of electron collisional and radiative broadening of super-transition arrays	
	on plasma opacities	92
P4	G.A. Pavlov	
	Dense plasma as a non-linear matter	93
P5	I. Saitov	
	Critical point and mechanism of the phase transition in warm dense hydrogen	94
P6	S.M. Amirov	
	Effect of quantum degeneracy on electron-atom scattering in partially ionized	
	dense plasmas	95
P7	E. Apfelbaum	
	The calculations of thermophysical properties of Ta plasma	96
P8	A. Askaruly	
	Two-component plasma stopping power directly from partial static structure	
	factors	97
P9	B.B.L. Witte	
	Ab initio simulations of the dynamic ion structure factor of warm dense lithium	98
P10	K.S.Ashrafi	
	Effect of dust charging on turbulence in protoplanetary disks	99
P11	A. Bessaa	
	Coupling strength of two-dimensional dust clusters in anharmonic traps	100
P12	A.E. Davletov	
	Static and dynamic properties of finite-size dust particles in a plasma	101
P13	J. Goree	
	Using the fluctuation theorem in strongly coupled plasmas	102
P14	S. Sundar	
	Physics of wake structure in a flowing magnetized plasma	103
P15	N.Kh. Bastykova	
	Binary collisions in strongly coupled classical plasmas in the uniform magnetic	
	field	104
P16	V.S. Filinov	
	Momentum distribution functions of one and two component non-ideal quantum	
	Coulomb systems	105
P17	A.S. Larkin	
	Quantum tails in momentum distribution functions of non-ideal Fermi systems	106
P18	K. Balzer	
	Ab initio approach to ion stopping at the plasma-solid interface	107
P19	M. Bonitz	
	Theoretical approach to the interaction of plasmas with strongly correlated	
	materials	108
P20	A. Filinov	
	Microscopic modelling of Ar scattering from Au and Pt (111/100) surfaces	109
P21	K. Ramakrishna	
	Dielectric response function for warm dense matter state	110

- P22 S.A. Khan Excitation of electron pulse-driven wakefields in metallic nanostructures . . . 111
 P23 J.W. Abraham
 - Simulation of metal cluster growth on a thin polymer film during sputter deposition 112

Tuesday

Poster Session II

P24	J.V.Triaskin	
	Nonlinear effects in a weakly ionized gas exposed to a strong shock wave	113
P25	G.J. Kalman	
	Correlation-induced second plasmon in an electron liquid	114
P26	N. Smirnov	
	The effect of spin-orbit interaction on structural stability and thermodynamic	
	properties of lead under pressure	115
P27	S. Conti	
	Multicomponent electron-hole superfluidity and BCS-BEC crossover in double	
	bilayer graphene	116
P28	T.W. Hyde	
	Interparticle/interchain forces in field-aligned chains within a complex plasma	117
P29	J.L. Roberts	
	Strong coupling corrections to electron-ion collision rates in ultracold plasmas	118
P30	L.G. Dyachkov	
	Structure of a Coulomb cluster in the cusp magnetic trap under microgravity	
	conditions	119
P31	D.S. Lapitsky	
	Function of state for Coulomb system in electrodynamic trap	120
P32	H. Pan	
	Strongly coupled complex plasma in a 2D harmonic trap	121
P33	S. I.Pavlov	
	The affect of the strong magnetic field on the dusty plasma in dc discharge .	122
P34	A.Yu. Chigvintsev	
	Phase transitions in local approximation and anomalies of spatial charge profiles	
	in non-uniform plasma thermoelectrostatics	123
P35	T.N. Ismagambetova	
	Influence of non-isothermality effect of plasma on Hugoniot adiabat	124
P36	D. Kang	
	Liquid-liquid phase transition of dense hydrogen: Nuclear quantum and nonlocal	
	exchange-correlation effects	125
P37	M.K. Issanova	
	Energy deposition and implosion time in dense plasmas of heavy ion inertial	
		126
P38	A. A Kozhberov	
	Electrostatic and phonon properties of multicomponent Coulomb crystals	127
P39	Zh. Moldabekov	
	Fluid description of dense quantum plasmas in RPA and beyond	128
P40	M. Preising	
	Melting line and DC conductivity of helium at high pressures	129
P41	Q. Ma	
	Directly calculated electrical conductivities of dense hydrogen from molecular	
	dynamics	130
P42	H. Reinholz	
	Comparison of path integral and quantum statistical approach for Stark broad-	
	ening of Lyman lines in H-plasma	131
P43	S. Rosmej	
	Collision processes in partially ionized plasmas	132

P44	N.M. Sakan	
	Free-free absorption coefficients in white dwarf atmosphere	133
P45	V.A. Srećković	
	HF electric properties of the astrophysical plasmas under extreme conditions	134
P46	K.N. Dzhumagulova	
	Electrical conductivity of dense semiclassical plasma	135
P47	A.A. Kozhberov	
	Phonons and heat capacity of magnetized Coulomb crystals of ion with polariz-	
	able electron background	136

Thursday

Poster Session III

P48	A. Gabdulin	
	Impact of the dipole-dipole interaction induced by an external field on the trans-	
	port properties of dusty plasmas	137
P49	P. Magyar	
	Exact calculation of the linear OCP response functions at strong coupling	138
P50	P. Magyar	
	OCP quadratic response functions	139
P51	L. S. Matthews	
	Dust chain formation and interaction with ion wakefield	140
P52	Ye.S. Mukhametkarimov	
	Chemical model of dusty plasmas	141
P53	R.U. Masheyeva	
	Cage correlation functions of dust particles in a background gas and external	
	magnetic field	142
P54	Kh. Santybayev	
	Calculating structural characteristics of one-component plasmas	143
P55	L. Silvestri	
	Classical dynamics of asymmetric charged particle bilayers	144
P56	Y.A. Ussenov	
	Electrical probe diagnostics of asymmetric RF discharge plasma with confined	
	nanodust particles	145
P57	A.T. Zhunisbekov	
	Obtaining of carbon nanoparticles in combined RF/DC discharge plasma	146
P58	S. Groth	
	The uniform electron gas at warm dense matter conditions	147
P59	Y. Lavrinenko	
	Simulation of dynamical properties of Hydrogen plasma by DFT-WPMD method	148
P60	S.K. Kodanova	
	Computer simulation of dynamic properties of dense plasmas using the theory	
	of effective potentials	149
P61	Ya. S. Lavrinenko	
	Applicability of different atomistic simulation methods for calculation of thermo-	
	dynamic properties of nonideal plasmas	150
P62	Zh. Moldabekov	
	Screening of ion potential in quantum non-ideal dense plasmas	151
P63	X. Zan	
	Configuration Path-Integral Monte Carlo: localized and non-orthogonal basis	152
P64	A.S Larkin	
	Pauli blocking by effective pair pseudopotential in degenerate Fermi systems of	
	particles	153
P65	G.A. Pavlov	
	X-Ray investigations of a high-energy-density plasma	154
P66	H. Reinholz	
	K-alpha emission profiles of warm dense argon plasmas	155
P67	N.A. Tahir	
	Simulation studies of the full impact of future circular collider ultra-relativistic	
	proton beam on a solid copper targe	156
P68	K. Ramakrishna	
	Dielectric response function for warm dense matter state	157
	,	

P69	N.A. Tahir	
	Generation of planetary interior conditions in the laboratory using intense heavy	
	ion beams at FAI	158
P70	N.Kh. Bastykova	
	The effect of dust particle polarization on the ion drag force	159
P71	M.A. Mochalov	
	Quasi-isentropic compressibility of deuterium at pressure region of 12 TPa .	160
P72	S. Sadykova	
	A new scheme for high-intensity laser-driven electron acceleration in a plasma	161

Direct determination of dynamic properties of strongly coupled plasmas

<u>I.M. Tkachenko</u>^{*1}, Yu.V. Arkhipov², A.B. Ashikbayeva², A. Askaruly², L. Conde³, A.E. Davletov², Z. Donkó⁴, D.Yu. Dubovtsev², P. Hartmann⁴, I. Korolov⁴, S. Syzganbayeva²

¹ Universidad Politécnica de Valencia, Valencia, Spain
 ² Al-Farabi Kazakh National University, Almaty, Kazakhstan
 ³ Universidad Politécnica de Madrid, Madrid, Spain
 ⁴ Wigner Research Centre for Physics, Budapest, Hungary

A closed algorithm is suggested which allows the determination of dynamic characteristics of various strongly coupled plasmas (one- and two-component plasmas, electron gas, etc.) within the non-perturbative model-free moment approach without any data input from simulations or direct experiments. The standard Nevanlinna formula (see [1,2] and references therein) for the loss function (LF) which incorporates its independently calculated power frequency moments or the sum rules is complemented with an observation with respect to the LF low-frequency behavior [2]. Thus, the constructed LF satisfies all involved sum rules automatically and permits to determine the system's dynamic structure factor (DSF), the dispersion, the decay, and other characteristics of the collective modes using only the (partial) static structure factors obtained numerically or theoretically. For one-component plasmas it also provides a model for the dynamic local-field correction [3]. Simplified interpolation formulas for the LF moments, which do not need the external static data, are also suggested whose validity confirms the robustness of the present approach. A good quantitative agreement with molecular dynamics simulation data is achieved in a wide realm of variation of the system parameters, see, for example, the following figures where our results computed on the basis of static characteristics obtained by the molecular-dynamics (MD) method are compared to the MD dynamic data.

Figure: Dispersion of plasma modes compared to MD data (figures): a) Coulomb OCP, b) Yukawa OCP at Γ=100 and κ=2. Line 2 stands for the sound mode. a is the Wigner-Seitz radius.
[1] I. M. Tkachenko, Y. V. Arkhipov, and A. Askaruly, The Method of Moments and its Applications in Plasma Physics (Lambert, Saarbrücken, 2012)
[2] Yu. V. Arkhipov et al., Phys. Rev. E 90, 053102 (2014), *ibid*, 91, 019903 (2015)
[3] Yu.V. Arkhipov et al., Phys. Rev. E 81, 026402 (2010)

^{*} email: imtk@mat.upv.es

Two-component plasma stopping power directly from partial static structure factors

<u>A. Askaruly</u>^{*1}, Yu.V. Arkhipov¹, A.B. Ashikbayeva¹, A.E. Davletov¹, D.Yu. Dubovtsev¹, S. Syzganbayeva¹, I.M. Tkachenko²

¹ Al-Farabi Kazakh National University, Almaty, Kazakhstan
 ² Universidad Politécnica de Valencia, Valencia, Spain

Reliable knowledge of energy losses of heavy projectiles is of substantial significance for the progress of inertial fusion and other practical applications. Polarizational stopping power of hydrogen-like dense plasmas

$$\left[-\frac{dE}{dx}\right]^{pol} = \frac{2\left(Z_p e\right)^2}{\pi v^2} \int_0^\infty \frac{dk}{k} \int_0^{kv} \omega^2 L(k,\omega) d\omega,$$

 $(Z_p e \text{ and } v \text{ are the projectile charge and velocity})$ is studied within the moment approach which constructs the system loss function, $\varepsilon(k, \omega)$ being the system dielectric function, in terms of only the system partial static structure factors so that $L(k, \omega)$ satisfies all convergent sum rules and other exact relations [1,2]. Electron-ion correlations in the target plasma are also taken into account [3] without using the simulation data. Enhancement of the stopping power is observed with respect to that in electron fluids [4], where the asymptotic values are always higher than the calculated ones, see Figure, for example.

Figure: Calculated stopping power (dots) and its asymptotic form (red dashed line) [3] at a) $\Gamma = \beta e^2/a = 10.77$; b) $\Gamma = 1.077$, β^{-1} , a, and v_F are the plasma tempreature, electronic Wigner-Seitz radius and Fermi velocity, respectively. The structure factors were calculated in the hyper-netted chain approximation.

[1] I. M. Tkachenko, Y. V. Arkhipov, and A. Askaruly, *The Method of Moments and its Applications in Plasma Physics* (Lambert, Saarbrücken, 2012) and references therein
[2] I. M. Tkachenko et al., To be presented at the SCCS 17 Conference
[3] D. Ballester, I. M. Tkachenko, Phys. Rev. Lett., **101**, 075002, (2008)
[4] M.D. Barriga-Carrasco, D. Casas, R.S. Morales, Phys. Rev. E, **93**, 033204, (2016) and references therein

^{*} email: abdiadil.askaruly@kaznu.kz

Calculating structural characteristics of onecomponent plasmas

<u>Kh. Santybayev</u>^{*1}, Yu.V. Arkhipov¹, A. Askaruly¹, A.E. Davletov¹, D.Yu. Dubovtsev¹, I.M. Tkachenko²

¹ Al-Farabi Kazakh National University, Almaty, Kazakhstan
 ² Universidad Politécnica de Valencia, Valencia, Spain

Practical application of research results on one-component plasma has found its reflection in various areas, such as astrophysics, lithography, dusty plasmas, ultracold plasmas, etc. Therefore, study of static and dynamic properties of OCP is of significant importance.

There is a number of theoretical methods of calculation of the static characteristics based on integral equations, fitting approximations and empirical formulas with the results of simulations often taken as reference. In this case, it is traditionally accepted that the theoretical results should be in a good agreement with the latter.

Not all of the above theoretical methods can be employed to calculate dynamic characteristics by the method of moments [1]. In the present work, we propose to qualify the static characteristics through the Hölder or Cauchy-Schwarz inequalities for the application of the above methods, b>0. The function b depends on the plasma thermodynamic characteristics via the static structure factor.

Precisely, we consider the hyper-netted chain (HNC) approximation with and without the empirical bridge function proposed by Ng [2], the modified HNC approximation (MHNC) [3], the variational modified HNC (VMHNC) [4], and other empirical and fitting formulas, e.g., [5]. For example, in Figure we present data for the HNC and the VMHNC, and show that in one case the inequality is violated.

Figure: Criterion of satisfaction of the Cauchy-Schwarz inequality, b>0, at $\Gamma=16$ for various theoretical methods: HNC (solid line); HNC with the bridge function [2] (dashed line); VMHNC [4] (dot dashed line).

- [1] I. M. Tkachenko et al., The present Conference
- [2] K.-Ch. Ng, J. Chem. Phys. 61, 2680 (1974)
- [3] G. Faussurier. M. S. Murillo, Phys. Rev. E. 67. 046404 (2003).
- [4] G. Faussurier. Phys. Rev. E 69, 066402 (2004)
- [5] N. Desbiens. P. Arnault. J. Clérouin. Physics of Plasma. 23. 092120 (2016).

^{*} email: kh.santybay@googlemail.com