[bookmark: _GoBack]Using the ez-Cryptosystem forData Transmission in Virtual Private Networks (Vpn)

Amirgaliyev Yedilkhan1,
1Suleyman Demirel University
Almaty, Kazakhstan
 amir_ed@mail.ru

Amanzholova Saule, Kalizhanova Aliya, Zamanova Saule, Kozbakova Ainur2
2Kazakh National Research Technical University
after K.I. Satpaev
Almaty, Kazakhstan
shokataeva@gmail.com, kalizhanova_aliya@mail.ru, saule_zamanova@mail.ru, ainur79@mail.ru

Abstract — The aim of the article is to research the process of information security in transmission between virtual subnets which are realized on data encryption algorithms of EZ-cryptosystem and secret key that protects the information from interception. In fact, the data to be intersegmental transfer coded output from one network, and decoded at the other input network, wherein the data encryption algorithm allows secure distribution between their endpoints. All data manipulations are transparent to the user working on the network.
Keywords— VPN, EZ-cryptosystem, encryption, decryption.
 Introduction
Today local area network (LAN) administrators are facing with the problems of information protection more often. It is especially important for networks where you are working with the information that should be protected additionally. It can be networks of governmental/public institutions, companies that produce certain kind of goods, other organizations that can be damaged economically if they have any disclosures. The problem becomes more serious when networks should be available to the Internet access or to mobile users and staff of remote offices also if LAN users have an opportunity to be connected to the Internet.
EZ-cryptosystem

Let be the finite set, which is called an alphabet. Elements from are called letters, finite sequence of elements from is called a word. The length of a word is a number of letters, which are in. Set of words is called the space of source codes. If is some set, then is the number of elements of a set. Number is the length of alphabet . If is an alphabet, then the original text which is an element of is called alphabetic original text (apt). Similarly, cipher text of any element from is called alphabetic cipher text (act). Then the length of original text coincides with the number of alphabetic original text, contained in it and the length of cipher text coincides with the number of alphabetic cipher text, contained in it.
It is constructed an infinite family of Euclidean cryptosystems satisfying the condition:

The encryption algorithm allows encrypting the source code of any length so that after encoding with a fixed encryption key all encrypted alphabetic texts are different, i.e. the cipher text contains no repetitions.

In condition the key expressions are "any length" and "fixed key", since there exist other well-known cryptosystems without repetitions, called polyalphabetic cryptosystems. From classical cryptosystems such concerns Vigenere cipher, of the modern - CBC modes and CTR modes. But if the key is fixed, then the length of the text without repetition is limited. Consider, for example CBC. Let - set of sequences of length m, consisting of zeros and ones. If the key is , it is easy to see that if the length of the text exceeds , where the length of the alphabet, then there are repetitions.

Assume that there is a cipher text with the large length. Then one of the methods for finding alpha source is the statistical analysis, which lies at the base of the frequency distribution of alphabet letters. Obviously, these methods are not applicable to cryptosystems satisfying condition even theoretically.
The main theorem
Algorithm of encryption and decryption comes from:

Theorem 1. Let be an arbitrary integer number. Then for any, such that 1<|p|<|k| and for any , such that

, 	 (1)

There exist integers,, satisfying the following conditions:

1).

2), .

3).

4) If and, then, and inverse, if, then.

Proof: Let be an arbitrary integer number, - integer number, satisfying the condition. As, that of the Chinese remainder theorem tells about existing of integer number, such that

 		 (2)

and , where the number may be taken from equality . Let is the remainder after dividing the by. It is known that , satisfying the conditions (2) uniquely defined, but from condition it is clear, that any two numbers of the form have the same remainders from dividing by , i.e. uniquely determined. Indeed, suppose that satisfy the conditions (2). Then we have

.

Therefore, as well as

and .
It is easy to see that

	 (3)

If, then from (3) follows that satisfies the condition (2) from the theorem. Inequality is right, since otherwise ,

and, but it is impossible, as and condition (3) from the theorem is hold. From (2) follows that if and , then and if, then, hence condition (4) of the theorem holds.
Encryption and decryption algorithms

 Algorithm of encryption: let be an integer number, an integer number such that and any integer number, satisfying conditions (1). Then from the theorem 1 we get. So, we have: - secret key, - plain text, - cipher text. From the proof of theorem 1 follows that the algorithm of encryption consists of next steps:

Step 1: find, using the equality. It is well known that can be found generalized by the Euclidean algorithm.

Step 2: find in the form of remainder from dividing by.

Step 3: .

 Algorithm of decryption:, i.e. - remainder from dividing by.

Remark 1 In our cryptosystem it is very easy to change the secret key. Indeed, if we change the key by, after we get a new encryption cipher text value, but after decoding again we have .

Definition 1 An integer is called a partial key of pair if it satisfies the conditions (1). If is a finite set of different partial keys, then is called the period of . If is the infinite, the period is infinite.

Remark 2 a) Let - secret key, - the plain text. From theorem 1 it follows that for any partial key , we can get the cipher text . These cipher texts are different for different , but for every .
b) The partial keys are used in the encryption process and not used in the decryption process.

It is obvious that for any finite set of pairs there are an infinite number of intermediate keys.

Let - set of different partial keys for pairs . From the theorem 1 it follows that if we encrypt by the algorithm , then cipher texts are different. We get the following:

 Algorithm of encryption: let - secret key, - set of plain texts, i.e., - set of different pairs of partial keys respectively. We encrypt the plain text, using the partial key and an algorithm. In the result all cipher texts are different. Thus, we have: - secret key, - plain text, - corresponding partial keys, - cipher texts.

Algorithm of decryption:

.
Construction of partial keys
From the above it follows that the partial keys play an important role in the encryption algorithm. We propose two algorithms for constructing these keys.

I. Let - alphabet and. Then it is easy to see that

	Is a set of partial keys for all pairs and the period is infinite.

II. Let be given the set of partial keys for pairs. The next algorithm allows to extend and get set of partial keys of any period .

If we investigate the set , it is obvious, that all of these products are partial keys for all pairs . Therefore, if we add to different elements of set , then we get the set of partial keys and period is equal to .
Attacks and modifications of algorithm
Consider the following attack on our cryptosystem.

Given a set of plain texts , corresponding set of encrypted texts and secret key . From algorithm of decryption implies the existence of integer numbers , such that

.
Then we have

, .

This attack can be effective for finding the secret key .
The following modification of the encryption and decryption is proposed.

 Encryption algorithm: Let , where - the ring of integers and

where. Then , because . Consider two maps , defined as follows:

, 	 (4)
Then

 (5)

We get: - plain text, - ciphertext. First step: we use the algorithm , second step: apply the mapping.

Algorithm of decryption:

 		 (6)

Here we have three secret keys: and . Plain text – integer numbers cipher texts - the elements of the Cartesian product .

Obviously, if the cryptosystem with the encryption algorithm and decryption algorithm satisfies the properties , then the cryptosystem of algorithms andsatisfies these properties.

Definition 2: A cryptosystem with encryption algorithm and the decryption algorithm is called EZ-cryptosystem.
Note 5: EZ-cryptosystem is a block cryptosystem

Suppose that and are known. Our goal is to find, or any information about them, provided with the known algorithms of encryption and decryption. We write:,, then we have following equations:

 		 	 (7)

 (8)

Well-known, that equation (7) with unknowns has infinite set of solutions, but if or is fixed, then the equation (7) has unique solution. It is obvious, that the equation (8) has infinite set of solutions too.
Encryption application
Encryption application is used for encrypting the text and send it to the recipient. Thus, in the client-server automated system it works as a server application. The main window of the application is presented on Figure 1.
[image:]
Figure 1 - Main window of encryption application
On the top of the window there is the menu panel (Figure 2)
The first inset "Program" used to watch the information about the author and program.
The inset "Settings" used for changing the language of the application. There are two languages available for the user: English and Russian.
The inset "Choose recipient" is used for changing the recipient of the message. There are three user created to show how the system works. For each user there are secret key k and additional keys a and b. They are written in the code of the program and applicable according to the main theorem of EZ-cryptosystem. While not any keys can be used, it could be difficult to find them. Therefore they are fixed before only for demonstration. Other applicable keys also could be used. In this case "Choose recipient" field should not be used.
Menu panel is the same in the server and client applications.
[image:]
[image:]
[image:]
Figure 2 - Menu panel
The field "Enter text" (Figure 3) used for writing the message. Message could have any size.
[image:]
Figure 3 - "Enter text" field
If the message is saved in the .txt file, it can be read from it. After choosing the needed file, its data will appear in the "Enter text" field (Figure 4).
[image:]
Figure 4 - Open file demonstration
Next, the keys should be chosen from "Choose recipient" inset or they could be entered by the keyboard without choosing the recipient. The encryption process could be finished by clicking the button "Encrypt" (Figure 5).
[image:]
Figure 5 - Secret keys field and encryption
After the clicking the "Encrypt" button the message will be ciphered. The results panel (Figure 6) shows:
pair (q,r) values for each letter. In other words, it is encrypted text.
work time - is the time the program needed to encrypt the text.
speed - is the number of bits that were encrypted in the interval of one second.
[image:]
Figure 6 - Results panel
"Send to recipient" panel is used for the transmitting the message. After clicking the "Connect" button the application looks for the client, and, after it will be found, the text "Connected" will appear in the field near the button (Figure 7).
[image:]
Figure 7 - Connection to the client
To send the message "Send" button is used. If the message is successfully sent, the text "Message received" will appear in the field to the left (Figure 8).
[image:]
Figure 8 - Sending to the client
The last field shows the Unicode of the message. This field is not important for the user, while it shows the message prepared in the appropriate form for the encryption.
Decryption application is used for decrypting the text which is sent by the server. Thus, in the client-server automated system it works as a client application. The main window of the application is presented on figure 9.
[image:]
Figure 9 - Main window of decryption application
When the message is successfully sent to the client, the encrypted text values (q,r) will appear in fields (figure 10)

[image:]
Figure 10 - Sent values panel
The secret keys could be chosen from "Choose recipient" panel or written manually. The recipient knows the sender of the message, therefore, the keys are also known. After choosing the key, "Decrypt" button is used for message decryption (Figure 11).
[image:]
Figure 11 - Message decryption
The decrypted text appears in "Decrypted text" field (Figure 12).
[image:]
Figure 12 - Decrypted text
The decrypted text could be copied manually from the textbox or the option "Save" could be used. The message could be saved to the file with .txt extension on the client computer (Figure 13).
[image:]
Figure 13 - Message saving
The "Results" panel (Figure 14) shows:
work time - is the time the program needed to decrypt the text.
speed - is the number of bits that were decrypted in the interval of one second.
[image:]
Figure 14 - Results panel
"Accept" button used for finish the work of the decryption application.
Key importance
It is important for the receiver to know the message sender. In other case the wrong key could be entered and the message never be decrypted correctly (Figure 15).
[image:]
Figure 15 - Wrong key case
Available languages
The message in the program could be written on English, Russian or Kazakh language. The figure 16 shows the correct decryption of any of these three languages.
[image:]
Figure 16 - Available languages
These solutions make it possible to build a highly secure and reliable channels of personal data within the local network and the Internet (VPN), and solve a wide range of issues of information security, including the deployment of public key infrastructure (PKI) in corporate and government systems, distributed processing of personal data at any level of complexity.
The concept of building a virtual network VPN is quite a simple idea: if there are two Internet site to exchange information between two nodes it is necessary to construct virtual secure channel to ensure the confidentiality and integrity of information transmitted over public networks; access to the virtual channel should be extremely difficult all possible active and passive external observer.
The benefits received by the company from creating such virtual channels are primarily large financial savings, as in this case, the company may refuse to build or lease expensive dedicated communication channels to create its own intranet extranet network and to use the cheap Internet channels, reliability and speed in which the majority is not inferior to the dedicated lines. The obvious cost-effectiveness of the introduction of MRI technology encourages enterprises to actively implement them.
References
Dru Lavigne, VPN и IPSec на пальцах [Electronic resource]–2005.- http://www.nestor.minsk.by/sr/2005/03/050315.html - 07.06.2015
A.Ten, V.Ten, Euclidean rings and cryptosystems Without repetition [Electronic resourse] – 2011. - http://www.tsi.lv/sites/default/files/editor/science/Research_journals/Computer/2011/V2/15_2_7_ten.pdf - 15.04.2015
The Quantification of Operational Risk/ Paolo Vanini.// University of Zurich -2003. – 01.05.2015.
Measuring operational risk in financial institutions: Contribution of credit risk modeling/ Georges Hübner/ - 2005. – 02.05.2015.
Implications of Alternative Operational Risk Modeling Techniques/ Patrick de Fontnouvelle/ Eric Rosengren Federal Reserve Bank of Boston. -2004. – 04.05.2015.
Cyclicality in catastrophic and operational risk measurements/ Linda Allen/ -2006. – 04.05.2015.
Operational Risk: Measurement and Modeling/ Daniel J. Brown/ Professional Risk Managers International Association. – 2004. – 05.05.2015.

oleObject3.bin

oleObject48.bin

image49.wmf
k

oleObject49.bin

image50.wmf
p

b

oleObject50.bin

image51.wmf
1

)

,

gcd(

=

k

s

oleObject51.bin

image52.wmf
"

,

'

"

'

pu

d

pu

d

p

p

=

=

oleObject52.bin

image53.wmf
k

image4.wmf
w

oleObject53.bin

image54.wmf
p

a

oleObject54.bin

image55.wmf
"

'

,

p

p

b

b

oleObject55.bin

image56.wmf
)

(mod

0

"

'

"

'

k

s

d

s

d

b

b

p

p

p

p

º

-

=

-

oleObject56.bin

image57.wmf
)

(mod

0

"

'

k

d

d

p

p

º

-

oleObject57.bin

image58.wmf
k

a

a

p

p

<

"

'

,

oleObject4.bin

oleObject58.bin

image59.wmf
)

(mod

0

"

'

"

'

k

d

d

a

a

p

p

p

p

º

-

º

-

oleObject59.bin

image60.wmf
"

'

p

p

a

a

=

oleObject60.bin

image61.wmf
)

(mod

)

(mod

k

p

k

s

a

s

d

b

p

p

p

º

º

=

oleObject61.bin

image62.wmf
s

a

c

p

=

oleObject62.bin

image63.wmf
c

image5.wmf
w

oleObject63.bin

image64.wmf
c

k

<

oleObject64.bin

image65.wmf
)

(mod

k

p

s

a

c

p

º

=

oleObject65.bin

image66.wmf
k

c

k

p

<

<

,

oleObject66.bin

image67.wmf
p

s

a

c

p

=

=

oleObject67.bin

image68.wmf
1

)

,

gcd(

=

p

s

oleObject5.bin

oleObject68.bin

image69.wmf
k

p

p

<

2

1

,

oleObject69.bin

image70.wmf
2

1

p

p

¹

oleObject70.bin

image71.wmf
2

1

c

c

¹

oleObject71.bin

image72.wmf
2

1

c

c

¹

oleObject72.bin

image73.wmf
2

1

p

p

¹

image6.wmf
*

S

oleObject73.bin

image74.wmf
)

(

1

C

oleObject74.bin

image75.wmf
k

oleObject75.bin

image76.wmf
p

oleObject76.bin

image77.wmf
p

k

>

oleObject77.bin

image78.wmf
s

oleObject6.bin

oleObject78.bin

image79.wmf
c

oleObject79.bin

image80.wmf
k

oleObject80.bin

image81.wmf
p

oleObject81.bin

image82.wmf
c

oleObject82.bin

image83.wmf
u

image7.wmf
X

oleObject83.bin

image84.wmf
1

=

+

vp

us

oleObject84.bin

image85.wmf
u

oleObject85.bin

image86.wmf
p

a

oleObject86.bin

image87.wmf
pu

oleObject87.bin

image88.wmf
k

oleObject7.bin

oleObject88.bin

image89.wmf
s

a

c

p

=

oleObject89.bin

image90.wmf
)

(

1

D

oleObject90.bin

image91.wmf
)

(mod

k

c

p

=

oleObject91.bin

image92.wmf
p

oleObject92.bin

image93.wmf
c

image8.wmf
X

oleObject93.bin

image94.wmf
k

oleObject94.bin

image95.wmf
k

oleObject95.bin

image96.wmf
1

k

oleObject96.bin

image97.wmf
)

(mod

1

1

k

c

p

=

oleObject97.bin

image98.wmf
s

oleObject8.bin

oleObject98.bin

image99.wmf
)

,

(

p

k

oleObject99.bin

image100.wmf
S

oleObject100.bin

image101.wmf
S

oleObject101.bin

image102.wmf
S

oleObject102.bin

image103.wmf
S

image9.wmf
X

oleObject103.bin

image104.wmf
k

oleObject104.bin

image105.wmf
p

oleObject105.bin

image106.wmf
s

oleObject106.bin

image107.wmf
s

c

oleObject107.bin

image108.wmf
s

oleObject9.bin

oleObject108.bin

image109.wmf
)

(mod

k

c

p

s

=

oleObject109.bin

image110.wmf
s

oleObject110.bin

image111.wmf
)

,

(

),...,

,

(

),

,

(

2

1

m

p

k

p

k

p

k

oleObject111.bin

image112.wmf
m

s

s

s

,...,

,

2

1

oleObject112.bin

image113.wmf
m

i

p

k

i

,...,

2

,

1

),

,

(

=

image10.wmf
S

oleObject113.bin

image114.wmf
m

p

p

p

,...,

,

2

1

oleObject114.bin

image115.wmf
)

(

1

C

oleObject115.bin

image116.wmf
m

c

c

c

,...,

,

2

1

oleObject116.bin

image117.wmf
)

(

2

C

oleObject117.bin

image118.wmf
k

oleObject10.bin

oleObject118.bin

image119.wmf
m

p

p

p

,...,

,

2

1

oleObject119.bin

image120.wmf
m

i

k

p

i

,...,

1

,

=

<

oleObject120.bin

image121.wmf
m

s

s

s

,...,

,

2

1

oleObject121.bin

image122.wmf
)

,

(

),...,

,

(

),

,

(

2

1

m

p

k

p

k

p

k

oleObject122.bin

image123.wmf
i

p

image11.wmf
S

oleObject123.bin

image124.wmf
i

s

oleObject124.bin

image125.wmf
)

(

1

C

oleObject125.bin

image126.wmf
m

c

c

c

,...,

,

2

1

oleObject126.bin

image127.wmf
k

oleObject127.bin

image128.wmf
m

p

p

p

,...,

,

2

1

oleObject11.bin

oleObject128.bin

image129.wmf
m

s

s

s

,...,

,

2

1

oleObject129.bin

image130.wmf
m

c

c

c

,...,

,

2

1

oleObject130.bin

image131.wmf
)

(

2

D

oleObject131.bin

image132.wmf
m

i

k

c

p

i

i

...,

2

,

1

),

(mod

=

=

oleObject132.bin

image133.wmf
}

,

,...,

,

{

2

1

Z

p

p

p

p

i

m

Î

=

S

image12.wmf
S

oleObject133.bin

image134.wmf
}

,...,

2

,

1

,

max{

m

i

p

K

i

=

=

oleObject134.bin

image135.wmf
)}

2

,

max(

,

1

)

,

(

,

,

{

k

K

s

k

s

prime

is

s

Z

s

S

>

=

Î

=

oleObject135.bin

image136.wmf
m

i

p

k

i

,...,

2

,

1

),

,

(

=

oleObject136.bin

image137.wmf
S

oleObject137.bin

image138.wmf
}

,...,

,

{

2

1

l

s

s

s

S

=

oleObject12.bin

oleObject138.bin

image139.wmf
m

i

p

k

i

,...,

2

,

1

),

,

(

=

oleObject139.bin

image140.wmf
S

oleObject140.bin

image141.wmf
l

N

³

oleObject141.bin

image142.wmf
}

1

...

,

...

{

2

1

2

1

1

2

1

³

+

+

+

=

l

n

l

n

n

n

n

n

s

s

s

S

l

oleObject142.bin

image143.wmf
m

i

k

p

i

,...,

2

,

1

),

,

(

=

image13.wmf
S

oleObject143.bin

image144.wmf
S

oleObject144.bin

image145.wmf
)

(

l

N

-

oleObject145.bin

image146.wmf
1

S

oleObject146.bin

image147.wmf
S

oleObject147.bin

image148.wmf
S

oleObject13.bin

oleObject148.bin

image149.wmf
N

oleObject149.bin

image150.wmf
)

(

*

oleObject150.bin

image151.wmf
n

p

p

p

,...,

,

2

1

oleObject151.bin

image152.wmf
n

c

c

c

,...,

,

2

1

oleObject152.bin

image153.wmf
k

image14.wmf
S

oleObject153.bin

image154.wmf
n

d

d

,

...

,

1

oleObject154.bin

image155.wmf
n

i

k

d

p

c

a

i

i

i

i

,...,

2

,

1

,

=

=

-

=

oleObject155.bin

image156.wmf
dk

a

a

n

=

)

,

...

,

gcd(

1

oleObject156.bin

image157.wmf
)

,

...

,

gcd(

1

n

d

d

d

=

oleObject157.bin

image158.wmf
k

oleObject14.bin

oleObject158.bin

image159.wmf
)

(

3

C

oleObject159.bin

image160.wmf
k

a

b

Z

b

a

<

Î

,

,

oleObject160.bin

image161.wmf
Z

oleObject161.bin

image162.wmf
Z

Z

r

q

c

´

Î

=

)

;

(

oleObject162.bin

image163.wmf
r

bq

ac

+

=

image15.wmf
)

(

A

oleObject163.bin

image164.wmf
r

ac

¹

oleObject164.bin

image165.wmf
k

c

>

oleObject165.bin

image166.wmf
Z

Z

E

k

®

:

oleObject166.bin

image167.wmf
Z

Z

Z

E

b

a

´

®

:

,

oleObject167.bin

image168.wmf
c

p

E

k

=

)

(

oleObject15.bin

oleObject168.bin

image169.wmf
)

,

(

)

(

,

r

q

c

E

b

a

=

oleObject169.bin

image170.wmf
))

(

(

,

p

E

E

c

k

b

a

=

oleObject170.bin

image171.wmf
p

oleObject171.bin

image172.wmf
c

oleObject172.bin

image173.wmf
)

(

2

C

image16.wmf
)

(

A

oleObject173.bin

image174.wmf
b

a

E

,

oleObject174.bin

image175.wmf
)

(

3

D

oleObject175.bin

image176.wmf
p

k

r

bq

a

=

+

-

)

)](mod

(

[

1

oleObject176.bin

image177.wmf
a

k

,

oleObject177.bin

image178.wmf
b

oleObject16.bin

oleObject178.bin

image179.wmf
Z

Z

´

oleObject179.bin

image180.wmf
)

(

2

C

oleObject180.bin

image181.wmf
)

(

2

D

oleObject181.bin

image182.wmf
)

(

A

oleObject182.bin

image183.wmf
)

(

3

C

image17.wmf
m

}

1

,

0

{

oleObject183.bin

image184.wmf
)

(

3

D

oleObject184.bin

image185.wmf
)

(

3

C

oleObject185.bin

image186.wmf
)

(

3

D

oleObject186.bin

image187.wmf
p

oleObject187.bin

image188.wmf
)

;

(

r

q

c

=

oleObject17.bin

oleObject188.bin

image189.wmf
a

k

,

oleObject189.bin

image190.wmf
c

b

,

oleObject190.bin

image191.wmf
x

k

=

oleObject191.bin

image192.wmf
t

c

z

b

y

a

=

=

=

,

,

oleObject192.bin

image193.wmf
p

x

t

=

)

(mod

image18.wmf
m

m

a

a

a

}

1

,

0

{

)

,...,

,

(

2

1

Î

oleObject193.bin

image194.wmf
r

z

q

yt

+

=

oleObject194.bin

image195.wmf
t

x

,

oleObject195.bin

image196.wmf
x

oleObject196.bin

image197.wmf
t

oleObject197.bin

image198.png
 VATTEncypt e

Settings

* Program Choose recipient

EEE— I

oleObject18.bin

image199.png

image200.png
Program

image201.png
b=1000

image202.png
dsfadfadfadsfadfadfadsfadfadiadsfadfadfadsfadfadfadsfadtad *

adsfadfadfadsfadfadiadsfadfadfadsfadfadfadsfadfadfadsfadfa
dfadsfadfadfadsfadfadfadsfadiadtadsfadfadfadsfadiadtadsfad
adfadsfadfadfadsfadiadiadsfadfadfadsfadfadiadsfadfadadsfa |
dfadfadsfadfadfadsfadfadfadsfadtadfadsfadfadfadsfadiadtadsf |~
adfadfadsfadfadfadsfadfadfadsfadfadfadsfadtadfadsfadfadfad
sfadfadfadsfadiadfadsfadfadfadsfadfadiadsfadfadfadsfadfadfa
dsfadfadfadsfadfadfadsfadfadiadsfadadfadsfadfadfadsfadfad
adsfadfadfadsfadfadiadsfadadfadsfadfadiadsfadfadfadsfadfa -

image203.png
 VATTEncypt

=

23

* Program Settings Choose recipient

ipublic static int CRT (intn,int a[.int

% Omcpoms
OO mrsomicon » <o][Tovec oo avn

>

YnopagounTs v Hogan nanka
- ShowPrintedinvoice A
* FastStone GIF File
18 3arpyaen 15K6
E] Heasshme wecta) SopCast
M Pabouwii cron Apneic
1002 Gaie
Jr—
FasStone GIF File
11566
Taragon goeen
554 Gair
I\ Pyccran nuTepatypa sceraa
8 Kounsiorep oTnMsanacs EnyOANOR Ca0Ero ..
& 53825650003 (C: Aoxywes icrosoft Word E

I3 DVD RW auckosc =

| crares Kowmn

Vs aiina: Hossii rexcrossii aokyment

HoBuit TekcToBbi AOKymeHT — Baokror | = | =

Oaiin_Tpaska Qopwar Baa_Crpasa

public static int cRT(int n, inc all, nt.
x=0;

int
for (int i =0; i <n i+
|}? =p *alil;
mt m[] = new int [n];

=0; i <n;)i
m[l] S GE

for Cine 1= 00 4 < 1500
= % b el (Govath. pou(rL

return x % p;

3
public static int Fidine m{
Tean flag;

for (int i
flag = tru
for (int
if (1%
Hlag - filse;
br

break;

3
if (Flag == true)
s

return x + 1;

image204.png

image205.png
596_960_739_785_2636_4448_2077_676_2616_622_2482_455_43

352_344_624_500_930_230_914_606_890_116_188_904_188_714
Worktime Speed

image206.png
112_117_98_108_105_99_32_115_116_57.

image207.png
112_117_98_108_105_39_32_115_116_97.

image208.png
B VATTDecrypt [=HRel_X_}]

Program Settings Choose recipient

Work ime

Portin standby mode connection

image19.wmf
m

l

2

×

image209.png
596_960_739_785_2636_4448_2077_676_2616_622_2482_4!

352_344_624_500_930_230_914_606_890_116_183_904_15

image210.png
596_960_739_785_2636_4448_2077_676_2616_622_2482_4!

352_344_624_500_930_230_914_606_890_116_183_904_18!

image211.png
publc static it CRTint n, nt [int)

image212.png
% VATTDecypt
Program Settings _ Choose recipint

=16 2 | ® Coxparums kax

596_960_739_785_2636_4448_2077_676_2616_622_2482_4! sy jilccapaney
352_344_624_500_930_230_914_606_890_116_188_904_18: 3¢ VisBpanrioe. ubnuorexn
8 3arpysen Cucteunan ranca

1433

B Pa6ounii cron

&) Heagshme mecta)

Cucremman nanka

S -
B oo Ay
[Boxymenter
& Vsobpaxcern e
@ My fc——
—
0 Koumworep e -
Vs otina: asde] 7]
Ton i (DTl 3
@ Cror |

image213.png
Work time.

Speed

image214.png
B VATTEncypt [= 8] = [I'm varmecypt =18

Settings

Program Choose recipient

Choose recipient

Program Settings.

Hello my fiiend!

Open file [60.95ez00h0baniO0
1553 E—

3562_3158_2281_785_2141_4416_2487_1527_1341_2742_4155_4¢

582_534_552_500_124_570_906_820_352_966_928_904_152_308,
Work ime
Work time
195

72_101_108_108_111_32_109_121_32_10;

Connected

image215.png
B VATTEncrypt =1 2 | ® VATTDecrypt e

Settings

Program Choose recipient Program Settings Choose recipient

C—

1820_109_1845_1894_682_2412_695_2438_3980_1134_767_3932.

116_130_926_626_128_492_744_276_180_262_394_172_990_372.
Work ime
Work time

Connected

Message received Connect

oleObject19.bin

image20.wmf
l

oleObject20.bin

image21.wmf
)

(

A

oleObject21.bin

image22.wmf
k

oleObject22.bin

image23.wmf
Z

p

Î

image1.wmf
S

oleObject23.bin

image24.wmf
Z

s

Î

oleObject24.bin

image25.wmf
1

)

,

gcd(

=

k

s

oleObject25.bin

image26.wmf
1

)

,

gcd(

=

p

s

oleObject26.bin

image27.wmf
p

a

oleObject27.bin

image28.wmf
c

oleObject1.bin

oleObject28.bin

image29.wmf
k

a

p

<

oleObject29.bin

image30.wmf
s

a

c

p

=

oleObject30.bin

image31.wmf
)

(mod

k

p

c

º

oleObject31.bin

image32.wmf
c

k

<

oleObject32.bin

image33.wmf
2

1

p

p

¹

image2.wmf
S

oleObject33.bin

image34.wmf
k

p

k

p

<

<

2

1

,

oleObject34.bin

image35.wmf
2

1

c

c

¹

oleObject35.bin

image36.wmf
2

1

c

c

¹

oleObject36.bin

image37.wmf
2

1

p

p

¹

oleObject37.bin

image38.wmf
k

oleObject2.bin

oleObject38.bin

image39.wmf
p

oleObject39.bin

image40.wmf
k

p

<

oleObject40.bin

image41.wmf
1

)

,

gcd(

=

k

s

oleObject41.bin

image42.wmf
p

b

oleObject42.bin

image43.wmf
)

(mod

),

(mod

0

k

p

b

s

b

p

p

º

º

image3.wmf
S

oleObject43.bin

image44.wmf
pus

b

p

=

oleObject44.bin

image45.wmf
u

oleObject45.bin

image46.wmf
1

=

+

vk

us

oleObject46.bin

image47.wmf
p

a

oleObject47.bin

image48.wmf
pu

d

p

=

