Process-based
Parallelism

In this chapter, we will cover the following recipes:

» Using the multiprocessing Python module
» How to spawn a process

» How to name a process

» How to run a process in the background

» How to Kill a process

» How to use a process in a subclass

» How to exchange objects between processes
» Using a queue to exchange objects

» Using pipes to exchange objects

» How to synchronize processes

» How to manage a state between processes
» How to use a process pool

» Using the mpi4py Python module

» Point-to-point communication

» Avoiding deadlock problems

» Collective communication using broadcast

» Collective communication using a scatter function

(7]

Process-based Parallelism

» Collective communication using a gather function
» Collective communication using A11toAll
» Reduction operation

» How to optimize the communication

Introduction

In the previous chapter, we saw how to use threads to implement concurrent applications.
This section will examine the process-based approach. In particular, the focus is on two
libraries: the Python multiprocessing module and the Python mpi4py module.

The Python multiprocessing library, which is part of the standard library of the language,
implements the shared memory programming paradigm, that is, the programming of a system
that consists of one or more processors that have access to a common memory.

The Python library mpi4py implements the programming paradigm called message passing.
It is expected that there are no shared resources (and this is also called shared nothing) and
that all communications take place through the messages that are exchanged between the
processes.

For these features, it is in contrast with the techniques of communication that provide
memory sharing and the use of lock or similar mechanisms to achieve mutual exclusion.

In a message passing code, the processes are connected via the communication primitives
of the types send () and receive ().

In the introduction of the Python multiprocessing docs, it is clearly mentioned that all the
functionality within this package requires the main module to be importable to the children
(https://docs.python.org/3.3/library/multiprocessing.html).

The main module is not importable to the children in IDLE, even if you run the script
as a file with IDLE. To get the correct result, we will run all the examples from the Command
Prompt:

python multiprocessing example.py

Here, multiprocessing example.py is the script's name. For the examples described
in this chapter, we will refer to the Python distribution 3.3 (even though Python 2.7 could be
used).

7

Chapter 3

How to spawn a process

The term "spawn" means the creation of a process by a parent process. The parent process
can of course continue its execution asynchronously or wait until the child process ends its
execution. The multiprocessing library of Python allows the spawning of a process through the
following steps:

1. Build the object process.
2. Callits start () method. This method starts the process's activity.
3. Callits join () method. It waits until the process has completed its work and exited.

How to do it...

This example shows you how to create a series (five) of processes. Each process is associated
with the function foo (i), where 1 is the ID associated with the process that contains it:

#Spawn a Process: Chapter 3: Process Based Parallelism
import multiprocessing

def foo (i) :
print ('called function in process: %s' %i)
return

if _name_ == '_main_ ':
Process jobs = []

for i in range(5):
p = multiprocessing.Process (target=foo, args=(i,))
Process_ jobs.append (p)
p.start ()
p.join()

To run the process and display the results, let's open the Command Prompt, preferably in
the folder containing the example file (named spawn_a_ process.py), and then type the
following command:

python spawn_a process.py

(7]

Process-based Parallelism

We obtain the following output using this command:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python spawn a process.py

called function in process: 0
called function in process: 1
called function in process: 2
called function in process: 3

4

called function in process:

As explained in the introduction section of this recipe, to create the object process, we must
first import the multiprocessing module with the following command:

import multiprocessing
Then, we create the object process in the main program:

p = multiprocessing.Process (target=foo, args=(i,))
Further, we call the start () method:

p.start ()

The object process has for argument the function to which the child process is associated
(in our case, the function is called foo ()). We also pass an argument to the function that
takes into account the process in which the associated function is situated. Finally, we call
the join () method on the process created:

p.join()

Without p. join (), the child process will sit idle and not be terminated, and then, you must
manually kill it.

This reminds us once again of the importance of instantiating the Process object within the
main section:

if _name_ == '_main_ ':

[

Chapter 3

This is because the child process created imports the script file where the target function is
contained. Then, by instantiating the process object within this block, we prevent an infinite
recursive call of such instantiations. A valid workaround is used to define the target function
in a different script, and then imports it to the namespace. So for our first example, we could
have:

import multiprocessing
import target function

if _name_ == '_main_ ':
Process_jobs = []
for i in range(5):
p = multiprocessing.Process \
(target=target_ function.function,args=(i,))
Process_jobs.append (p)
p.start ()
p.join()

Here, target function.py is as shown:

#target function.py

def function(i):
print ('called function in process: %s' %i)
return

The output is always similar to that shown in the preceding example.

How to name a process

In the previous example, we identified the processes and how to pass a variable to the target
function. However, it is very useful to associate a name to the processes as debugging an
application requires the processes to be well marked and identifiable.

How to do it...

The procedure to name a process is similar to that described for the threading library (see the
recipe How to determine the current thread in Chapter 2, Thread-based Parallelism, of the
present book.)

(77}

Process-based Parallelism

In the main program, we create a process with a name and a process without a name. Here,
the common target is the foo () function:

#Naming a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def foo():
name = multiprocessing.current process () .name
print ("Starting %s \n" %name)
time.sleep(3)
print ("Exiting %s \n" $name)
if name == ' main_ ':
process_with name = \

multiprocessing.Process)\
(name="'foo_process',\
target=£foo)
process_with name.daemon = True
process_with default name = \
multiprocessing.Process)\
(target=£foo)
process_with name.start ()
process_with default name.start ()

To run the process, open the Command Prompt and type the following command:
python naming process.py
This is the result that we get after using the preceding command:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python naming process.py

Starting foo process

Starting Process-2

Exiting foo process

Exiting Process-2

[

Chapter 3

The operation is similar to the procedure used for naming a thread. To name a process, we
should provide an argument with the object's name:

process with name = multiprocessing.Process
(name="'foo function', target=foo)

In this case, we called the foo function process. If the process child wants to know which
its parent process is, it must use the following statement:

name = multiprocessing.current process () .name

This statement will provide the name of the parent process.

How to run a process in the background

Running a process in background is a typical mode of execution of laborious processes
that do not require your presence or intervention, and this course may be concurrent to the
execution of other programs. The Python multiprocessing module allows us, through the
daemonic option, to run background processes.

How to do it...

To run a background process, simply follow the given code:

import multiprocessing
import time

def fool():
name = multiprocessing.current process () .name
print ("Starting %$s \n" %name)
time.sleep(3)
print ("Exiting %s \n" %name)
if mname == ' main ':

background process = multiprocessing.Process\
(name='background_process',\
target=£foo)

background process.daemon = True

[}

Process-based Parallelism

NO_background process = multiprocessing.Process)\
(name="'NO_background_process', \
target=£foo)

NO background process.daemon = False

background process.start ()
NO_background process.start ()

To run the script from the Command Prompt, type the following command:
python background process.py
The final output of this command is as follows:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python background process.py

Starting NO background process

Exiting NO background process

To execute the process in background, we set the daemon parameter:
background process.daemon = True

The processes in the no-background mode have an output, so the daemonic process ends
automatically after the main program ends to avoid the persistence of running processes.

Note that a daemonic process is not allowed to create child processes. Otherwise, a daemonic
process would leave its children orphaned if it gets terminated when its parent process exits.
Additionally, these are not Unix daemons or services, they are normal processes that will be
terminated (and not joined) if non-daemonic processes have exited.

(&)

Chapter 3

How to kill a process

It's possible to kill a process immediately using the terminate () method. Also, we use the
is_alive () method to keep track of whether the process is alive or not.

How to do it...

In this example, a process is created with the target function foo () . After the start, we Kill it
with the terminate () function:

#kill a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def foo():
print ('Starting function')
time.sleep(0.1)
print ('Finished function')
if _name_ == '_main_ ':

p = multiprocessing.Process (target=£foo)

print ('Process before execution:', p, p.is_alive())
p.start ()

print ('Process running:', p, p.is_alive())
p.terminate ()

print ('Process terminated:', p, p.is_alive())
p.join()

print ('Process joined:', p, p.is_alive())

print ('Process exit code:', p.exitcode)

Cs

Process-based Parallelism

The following is the output we get when we use the preceding command:

76 Pythan Shell =RASN X

File Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [M5C w.1600 32 bit (Int _J

el}] on win3Z
Type "copyright™, "credits" or "license ()" for more information.
> RESTART

g e g

Process before execution: <Process(Process-1, initial)>» False
Process running: <Process (Process-1, started)> True

Procezss terminated: <Process(Process-1, stopped[SIGTEEREM])> True
Process joined: <Process(Process-1, stopped[S5IGTERM])> False

Process exit code: -15
> | -
Ln:10|Col: 4
— 4

We create the process and then monitor its lifetime by the is_alive () method. Then, we
finish it with a call to terminate ():

p.terminate()

Finally, we verify the status code when the process is finished, and read the attribute of the
ExitCode process. The possible values of ExitCode are, as follows:

» == 0:This means that no error was produced

» > 0:This means that the process had an error and exited that code

» < 0:This means that the process was killed with a signal of -1 * ExitCode

For our example, the output value of the ExitCode code is equal to -15. The negative value
-15 indicates that the child was terminated by an interrupt signal identified by the number 15.

How to use a process in a subclass

To implement a custom subclass and process, we must:

» Define a new subclass of the Process class

» Overridethe init (self [,args]) method to add additional arguments

» Overridethe run (self [,args]) method to implement what Process should
when it is started

Once you have created the new Process subclass, you can create an instance of it and then
start by invoking the start () method, which will in turn call the run () method.

[

