

13[™] INTERNATIONAL CONFERENCE ON THE STRUCTURE OF NON-CRYSTALLINE MATERIALS

HALIFAX - CANADA JULY 24-29, 2016

Josef Zwanziger, Chair

NCM-13: Abstracts

Dyussembaev, Sanzhar : Phase Transition 'Glass-Crystal' And Switching Effect	
In Nanoscaled Ge2Sb2Te5 Films Modified By Bismuth Impurity	65
Arasuna, Akane : Dehydration Of Silica Gel Under Shock-Wave Compression	
As A Model For A Collision Of Comet To Earth's Surface	66
Vermillac, Manuel : Use Of Thulium-Doped LaF3 Nanoparticles To Enhance	
Thulium 3H4 Lifetime In Silica-Based Optical Fibres	67
Ishii, Yoshiki : A Transferable Force Field Based On First-Principles Calculation	
For Silicates And Aluminosilicates	68
Adawy, Amin El : The Glass Transition Temperature And Infrared Absorption	
Spectra Of Te2-Nb2O5-TiO2 Glasses	69
Rashidi, Abdul : Computer Simulations Of Borosilicate Glass	70
Mehta, N. : Observation Of Meyer-Neldel Rule In Chalcogenide Glasses	71
Chechetkina, Elena A. : Self-Organization And Step-Like Relaxation In Glass-	
Forming Liquid And Glass	72
Skatkov, Leonid : Investigation On The Fractal Dimension Of MnO2 Pyrolytic	
Films by SAXS Method	73
Bilovol, Vitaliy : Short-Range Order In The Structure Of Ag-Ge-Se Bulk Glasses	74
Mori, Tatsuya : Terahertz Dynamics Of Pharmaceutical Indapamide: Boson	
Peak Detection Using Terahertz Time-Domain Spectroscopy	75
Clare, Alexis : The Role Of Bond Type In Simplification Of Glass Compositions	76
Rocca, Francesco : Structural And Compositional Characterization Of Biogenic	
Selenium Nanoparticles Synthesized By Microbial Strains During The Re-	
duction Of Toxic Selenite Into Elemental Selenium.	77

6

Posters

Poster P04

PHASE TRANSITION "GLASS-CRYSTAL" AND SWITCHING EFFECT IN NANOSCALED Ge₂Sb₂Te₅ FILMS MODIFIED BY BISMUTH IMPURITY

S. Dyussembayev¹, O. Prikhodko¹, A.Sazonov², Zh. Tolepov¹, N. Almasov¹, S. Maksimova¹, N. Guseinov¹, S. Kozyukhin³

¹IETP, al-Farabi Kazakh National University, Almaty, Kazakhstan ²University of Waterloo, Waterloo, Canada ³Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia

Corresponding author: sanzhar.dyussembaev@gmail.com

It is well known that in the films of Ge₂Sb₂Te₅ chalcogenide glassy semiconductor under the external influences (light or voltage pulse) the reversible phase transition "glass-crystal" takes place. It allows to create the optical storage devices such as DVD, Blu-Ray and especially the new generation of non-volatile memory cells such as Phase Change Memory (PCM) on the base of these films. The embedding of metal impurity in the films can reduce the crystallization time and increase the speed of memory cells. However, the features of phase transition in the metal-modified Ge₂Sb₂Te₅<M> films of have not been studied well.

This work presents the results of the study of the structure and switching effect observed in nanoscale films of Ge₂Sb₂Te₅ modified by Bi (Ge₂Sb₂Te₅<Bi>).

The Ge₂Sb₂Te₅<Bi> films with thickness ranged from 50 to 200 nm were obtained by ion-plasma magnetron sputtering of combined target Ge₂Sb₂Te₅-Bi in argon atmosphere. Bismuth concentration in the films was 6 and 12 at.%.

By the method of HR-TEM imaging (Fei-Titan) it was found that the structure of $Ge_2Sb_2Te_5$ <Bi>films presents the amorphous matrix with isolated crystalline nanoregions (nanoclusters) of metallic bismuth with average size ~ 8 nm.

Local atomic structure of the films was studied by Raman spectroscopy using He-Ne red laser with wavelength 632 nm. It was found that under the laser irradiation there is the structure transition of nanoscale Ge₂Sb₂Te₅ films from amorphous into polycrystalline hexagonal stable state through metastable polycrystalline cubic phase. In contrast, in the Ge₂Sb₂Te₅<Bi> films the transition from amorphous to polycrystalline hexagonal stable state under the laser irradiation occurs without intermediate metastable cubic phase.

The study of the switching effect showed that in Ge₂Sb₂Te₅<Bi> films there was a significant reduction of the switching time and threshold voltage in comparison with Ge₂Sb₂Te₅ films. The improvement of the switching parameters in the bismuth modified nanoscale Ge₂Sb₂Te₅ films, it is obvious, due to the peculiarities of the "glass-crystal" phase transition in these films.

This work was carried out on 4607/GF4 grant of Committee of Science of ESM RK.