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Small nonassociative corrections for the SUSY operators Q, g are considered. The
smallness is controlled by the ratio of the Planck length and a characteristic length
lg = ATY/2, Corresponding corrections of the momentum operator arising from the
anticommutator of the SUSY operators are considered. The momentum operator cor-
rections are defined via the anticommutator of the unperturbed SUSY operators Qg4
and nonassociative corrections Q1 q,,. Choosing different anticommutators, one can
obtain either a modified or g-deformed commutator of position z#* and momentum
operators P,.
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1. Introduction

Observational data [1-7] indicate that we live in the Universe expanding with accel-
eration. As a source of the acceleration, one can introduce either “dark energy”
or modify Einstein gravity (for example, by considering F'(R) modified gravities).
The list of models explaining the acceleration includes quintessence [8], a phantom
scalar field [9], a tachyon scalar field [10], a Chaplygin gas [11-13], holographic dark
energy [14], modified gravitational theories (including F'(R)-gravities) [15-17] and
SO on.

All these models are dynamic in the sense that the present value of the cosmo-
logical constant A is explained in a dynamic way by using either some kind of matter
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or modified gravity. Another way is to postulate that A is indeed a fundamental
constant. Following this way, it would be very interesting to understand what kind
of physics is behind such approach. In [18, 19], we proposed the idea that the
cosmological constant A can be connected with the appearance of nonassociativity
(NA) in physics. In this model, the constant A controls the smallness of NA effects
in quantum physics: the dimensionless quantity lf,lA ~ 107'2% shows where the NA
effects may occur. It may happen either on the huge scale {3 = 1/\/K ~ 10%6m
(that means that there exists a maximal length ¢y) or with the small momentum
Po ~ hv/A = 10730 ¢ - m/s. We see for the first case that in Nature there exists
a minimal 4D scalar curvature (a unique Lorentz invariant quantity having the
dimensions cm~2): Ry ~ A. It immediately leads to a very simple explanation
for the acceleration of the present Universe: the Universe reaches the minimally
possible curvature and has to stay in this state.

Physically, in this model, the appearance of A constant is connected with the
breaking of NA that can be illustrated by the following diagram:

classical physics
breaking of commutativity — 7
quantum physics

breaking of associativity — £y = A~'/2

nonassociative physics

In this diagram, the breaking of commutativity is measured by Heisenberg uncer-
tainty principle

(&, ps] = ih. (1)
In the same way, one can breaks the associativity in SUSY:

[Qm, an Qz] = (QzQy)Qz - Qz(Qsz) 7é 07 (2)

where z,y, z are any combination of dotted and undotted indexes. The relation (2)
is identical to (1) in the sense that the first relation (1) breaks the commutativity
of physical quantities but the second one breaks the associativity.

In the standard supersymmetry, the operator Q4 ¢ can be presented as a deriva-
tive with respect to coordinates §¢,0%, x*. Here, we want to consider a NA gener-
alization of these generators when adding small NA terms. We will show that the
introduction of such NA operators gives rise to the appearance of new fundamental
constant £y with the dimension cm. It means that we can identify fo = A='/2,
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2. Small Nonassociative Corrections to the Standard Qg 4
Operators

In standard SUSY the operators (04,4 and the momentum operator P, = —ihd,
are connected by the expression

{Qaa Qd} = 20’5de~ (3)

In [18, 19], the NA generalization of the simplest SUSY algebra is proposed. Here,
we would like to investigate the case when the standard operators @), are slightly
changed in a NA manner:

Qa = Qa+§Q1,a+£2Q2,a+"'a (4)
Qi =Qa+6Q1au+EQas+ -, (5)
P .
Qo = 505 ioh. 090, (6)
0 .
Qs = 505 + 19‘105&8“, (7)

where £ = (lp/Eo)l/?’ is a small NA parameter, [p is the Planck length, £y = A~/2,
and (Q1,2,4,4 are small additional NA terms for @, 4. Henceforth, we will work to
the accuracy &.

Let us recall the definition of an associator

[A,B,C] = (AB)C — A(BC), 8)

where A, B, C' are nonassociative quantities. Evaluation of associators for Qg ¢ with
an accuracy of £ gives us

[Qza@ya@z] = fg[Ql,zan,yan,z]y (9)

where the indices x,y, z are any combinations of dotted and undotted indices, and
we took into account that the operators (), ; are associative ones but (1,4, are
nonassociative ones. Henceforth, for brevity, we omit the index 1: Q1 4.4 — Qa.a-

It is shown in [19] that the simplest nonassociative generalization of SUSY
operators gives us the following 3-point associators

&1Qa, Qb, Qc] = %@(Qaebc — Qetab), (10)
€100 00 @ = 5 aQucn (1)
£*[Qa, Q;,Qc] =0, (12)
£1Qu @ @1l = —1-GQucan (13)
£1Qu 04 Q) = 5 1Qucic (14)
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&[Qa, Qv Qs =0, (15)
€100, Q4 Q) = ~1-Ceucy (16)
Q4. Q;, Qe] = %Q(Qa%é —Qeeyi), (17)

where [(1,2,3.4] = 1. Here, we have inserted the coefficient £ on the left-hand sides
of the equations to have the same order of smallness of the left-hand and right-hand

sides of Egs. (10)—(17), and
0 1 (18)
€.; = €qp = ,
ab b 1 0

i 0 -1
ab ab
= = . 19
€ € (1 0 ) (19)

i edi’, and the undotted —

ab’
by using eqp, €?®. Introducing dimensionless operators Q, = (h/lp)1/2 Q:, one can
show that the left-hand and right-hand sides of Eqgs. (10)—(17) have the same order.

The dotted indices are lowered and raised by using e

3. Nonassociative Corrections in the Momentum Operator

Now, we can calculate the anticommutator (3) using the expansion (4):
{Qa, Qa} = 2055115# =200, +&{Qa, Qua} + - =200, (Pu+ &P +--+). (20)

This expression defines the generalized momentum operator ]5# with the NA
corrections (the terms with &) which are negligibly small since & ~ 10720,

Let us consider the Heisenberg uncertainty principle with the generalized
momentum operator 15#

[z#, P,] = ihdk + E[at P ] + - -. (21)

The properties of the operator ()1 4,4 are determined by the associators (10)—(17)
and the anticommutator

{Qm Ql,d} = 205(‘1P1,;1,~ (22)

Let us consider different choices of the operator Py .

3.1. The case of P, = P,f(P?)
In this case, using the relation [4, BC] = B[A, C] + [A, B]C, we obtain

(2", P1o] = [2#, P f(P?) + Pula™, f(P?)]. (23)
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To be specific, let us consider the case f(P?) = P,P"/P§, where Py = h/lp.
Substituting it into (23), we obtain

P, P ih
zH, Pya—] = —(0"P? 4 2P"P,). (24)
[ Fg Fg
Finally, we have
[2*,P,] = ih {55 + %(55132 +2P"P,)|. (25)
0

We see that it is a generalized uncertainty principle [20]. The difference from the
standard approach is that the coefficient £ in the NA approach (25) is negligibly
small and is connected with the constant A.

3.2. The case of Py, = az,f(P?) + B8f(P?)z,
Analogously to (23), we have

[z", P ] = ax, [z, f(P?)] + Bla", f(P?)]z,. (26)
For the simplest case f(P?) = P, P%/(2ih), we obtain
[z#, P1,] = aa" P, + BP,z". (27)
Substituting it into (21), we have
[z#, P,] = ihd" + &(aat P, + BP, ") (28)
which can be rewritten as
[x#, P,]q = ihd¥, (29)
where a g-deformed commutator is
[2",P,], = (1 — a&)z" P, — (1 + BE)P,a*. (30)

For the case a = 3

~1+aé. (31)

SEE

qzl_afa

Then (29) and (30) take the form

]
[z*,P,|q = qz*P, — aP,,.’IJ” = ihol). (32)

We can make a mild conjecture that at least in this direction (nonassociativity —
g-deformation) this appears to be the case in this specific case and might be true
in general too (for details of g-deformation, see the textbooks [21, 22]).
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4. Discussion and Conclusions

We have investigated small nonassociative corrections for the SUSY generators
Qa,q- The corrections are controlled by the nonassociative parameter £. We have
considered the corrections with an accuracy of £. It is shown that such corrections
give rise to the appearance of additional terms in the momentum operator. These
terms modify the commutator [z#, P,], which depends on the properties of the
commutator between the unperturbed SUSY generator (), ; and the NA corrections
Ql,a,(r

In our approach, the cosmological constant A = £ 2 is an NA parameter con-
trolling the smallness of NA effects in quantum physics. The corresponding dimen-
sionless parameter is & = (Ip/fy)/3. But now, one surprising effect can be observed
on huge scales when a huge value of fjy gives rise to an extremely small inverse
quantity — the scalar curvature Ry, = £ 2 = A Physically, it means that the
4-dimensional Ricci scalar curvature of the Universe should satisfy the inequality
Ryp 2 Ruyin- Thus, in our model A is a constant which is associated with the NA
effects in cosmology.

Another interesting effect of the model under consideration is that the small NA
corrections in the SUSY operators @, 4 give rise to modifications of a quantum com-
mutator of position and momentum operators. These modifications depend on the
properties of an anticommutator of unperturbed and perturbed SUSY operators.

It must be noted that all the NAeffects are extremely small because of the
smallness of the NA parameter ¢ ~ 10720,
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