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Abstract—Cryptographic systems, developed on the basis of 
nonpositional polynomial notations, are called nonconventional or 
modular. In this paper modelling of the encryption algorithm 
based on nonpositional polynomial notations is described. The 
development of the model of block cipher system comprises the 
construction of the modified nonpositional block cipher algorithm, 
using an analog of the Feistel scheme and a mode of application 
for this modified algorithm.  
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I. INTRODUCTION 

The model of the encryption algorithm described in this 
paper applies nonconventional algebraic method. This method is 
based on the theory of nonpositional polynomial notation 
systems (NPNs) in residue classes, which is also called 
polynomial notations in residue numeral system (polynomial 
RNS). 

Classical modular arithmetic, or residue number system 
(RNS) is based on the Chinese remainder theorem, which states 
that any number can be represented by their remainders 
(residues) from its division by the base numbers systems, which 
are formed by pairwise coprime numbers. In contrast, in 
polynomial RNS moduli are represented by irreducible 
polynomials with coefficients over (2)GF  [1,2]. The 
application of NPNs allows improving durability and efficiency 
of nonpositional cryptographic algorithms without increasing 
the length of secret key [3].  

Improved efficiency is provided by the rules of NPNs in 
which all arithmetic operations can be performed in parallel to 
the base module NPNs. In nonpositional cryptosystems the 
cryptostrength is characterized by a complete secret key. 
Cryptostrength in this case depends not only on the length of a 
key sequence, but also on choice of a system of polynomial 
bases. With the growth of the order of irreducible polynomials 
with binary coefficients, their number also grows rapidly. The 
greater the length of the input block, the more choices of 
working systems bases are possible. Therefore, the 
cryptostrength of the proposed encryption algorithm against 
bruteforce attack significantly increases with the length of the 
electronic message.  

In [3] the arithmetic of nonpositional number systems with 
polynomial bases and its application to problems of improving 
reliability are developed. As it is shown, the algebra of 

polynomials over a field in modulus of the irreducible 
polynomial over this field is a field and the representation of the 
polynomial in the nonpositional form is the only (analogous to 
the Chinese remainder theorem for polynomials). According to 
the Chinese remainder theorem, all working base numbers 
should be different. 

II. DESIGN OF THE NONPOSITIONAL ENCRYPTION 

ALGORITHM 

A. Nonpositional Polynomial System 

Encryption of the data block of the given length N is done in 
the following way. From the set of all irreducible polynomials of 
degree not exceeding N form a system of working bases: 

p1(x),p2(x),...,pS(x).                             (1) 

A data block of length of N bits is represented as a sequence 
of remainders of division of some polynomial (let us denote it as 
F(x)) by working base (Eq. 1) 

F(x) = (α1(x), α2(x),...,αS(x)),                          (2) 

where F(x) = αi(x)(mod pi(x)), i = 1...S. 

Remainders α1(x), α2(x),...,αS(x) are selected in the way 
where binary coefficients of reminder α1(x) correspond to the 
first l1 bits of the message, the next binary coefficients of  
reminder α2(x) correspond to the next l2 bits, etc., and binary 
coefficients of reminder αS(x) correspond to the last lS bits. 

Then the secret key of length of N  bits is also interpreted as 
a system of residues β1(x),β2(x),…,βS(x), but from division of 
other polynomial G(x) by the same moduli system: 

G(x) = (β1(x), β2(x),...,βS(x)),                       (3) 

where G(x) = βi(x)(mod pi(x)), i = 1...S. 

After encrypting the message F(x) using the key G(x) a 
ciphertext is obtained. This ciphertext is considered as a function 
H(x): 

H(x) = (ω1(x), ω2(x),...,ωS(x)).                       (4) 
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Encrypted text (Eq. 4) for a message of the length N bit is 
obtained by multiplying polynomials (Eq. 2) and (Eq. 3): 

F(x)G(x) = H(x)(mod P(x)).                       (5) 

For deciphering H(x) by the known key G(x) for each value 
βi(x) an inverse polynomial βi

-1(x) is calculated: 

βi(x)βi
-1(x) ≡ 1(mod pi(x)), i = 1...S.                 (6) 

The result is the polynomial  

G-1(x) = (β1
-1(x),β2

-1(x),...,βS
-1(x)),                    (7) 

which is inverse to the polynomial G(x). Then the plain message 
is restored in accordance with (Eq. 5) and (Eq. 6): 

F(x) = G-1(x) H(x)(mod P(x)).                    (8) 

Thus, the complete key consists of the chosen system of 
polynomial working bases P(x) and the secret key G(x). 

B. Nonconventional Encryption Algorithm 

In proposed model of the nonconventional encryption 
algorithm the Feistel scheme (network), which has gained wide 
popularity in the development of symmetric block ciphers, is 
used. This scheme was first used by Horst Feistel in 1973 in the 
development of the cipher Lucifer[4], and then used in many 
developments of block ciphers, including standards DES and 
AES [5]. Feistel scheme is a method of blending the sub-blocks 
of the input text in the cipher through the repeated use of the 
key-dependent non-linear functions, called round functions and 
performance of permutations of the sub-blocks. Round of a 
block cipher is a transformation that connects the sub-blocks of 
the input block by the round function and permutations of 
sub-blocks. In the standard Feistel network, the plaintext is 
divided into two sub-blocks of the same length. In general case, 
the Feistel network can split an input block into  ≥ 2 sub-blocks. 
Further assumed that all sub-blocks are of the same length, so 
that each sub-block may be involved in the transposition with 
any other sub-block. A common exchange scheme is a 
permutation of  ≥ 2 sub-blocks in the round. 

During the development of the nonpositional encryption 
algorithm different designs of the Feistel scheme are 
investigated. In [6] the modification of the unconventional 
encryption algorithm was described, considering the usage of 
Feistel scheme as a pre- and postprocessing of data block. 

Unlike traditional Feistel network where the input data is a 
plain text message, the input of the modified postprocessing 
Feistel scheme is supplied by the bit sequence of ciphertext, 
obtained from the unconventional encryption algorithm (Eq. 4) 

In the model with preprocessing, the input block of plain 
data first is encrypted by classical Feistel scheme, then is 
transformed by the unconventional encryption algorithm. 

Additionally, the model was developed, which repeats the 
structure of classical Feistel scheme, but the round function of 
which encrypts the subblock of data by the unconventional 
encryption algorithm. The round function might depend not only 
on round key, but also on selected system of bases. In this case 
the round function is called heterogeneous. The use of 
heterogeneous networks can significantly improve the 
characteristics of the cipher as uneven changes in internal 
properties of the network makes the study of statistical 
characteristics of encrypted data rather difficult task. 

Currently the possibilities of practical application of the 
encryption algorithm based on nonpositional polynomial 
notations using nested Feistel network are being studied. The 
use of nested, or recursive, Feistel network scheme can 
significantly complicate a cryptanalysis of the cipher [7]. 

There is a potential possibility of information leaks about 
recurring parts of data which encrypted on the one and the same 
key, in view of the fact that the block ciphers encrypt data by 
fixed-size blocks [8]. Therefore, for using block cipher 
algorithms various modes are developed [9]. Encryption modes 
in the process of cryptographic transformations are used to 
provide the required conditions for encrypted messages. The 
main condition is that the encryption result of each block must 
be unique regardless of the encrypted data. 

III. SUMMARY 

The research of the possibility of implementing Feistel 
scheme and encryption modes helps to investigate the practical 
usability of the developed models. Computer modelling of the 
nonpositional encryption algorithm allows to develop 
recommendations for its application. 

Proposed models of the unconventional encryption 
algorithm are the basis for its future application in nonpositional 
cryptosystems. These models will also be studied further in the 
future. 
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